DOI QR코드

DOI QR Code

The Investigation of COD Treatment and Energy Consumption of Urban Wastewater by a Continuous Electrocoagulation System

  • Received : 2021.07.01
  • Accepted : 2021.12.19
  • Published : 2022.05.28

Abstract

In this study, electrochemical treatment of urban wastewater with electrical conductivity of 1000 μS cm-1 and chemical oxygen demand of 250 mg L-1 was investigated using the variables of initial pH value, current density and flow rate. Electrocoagulation was used, in which aluminum and stainless steel were selected, as the electrochemical treatment process. The electrocoagulation process was operated in continuous mode. The data obtained in experimental studies show that the best COD removal efficiency occurred in experiments where the initial pH value was 6. The increase in current density from 5 A to 15 A decreased the removal efficiency from 79 to 67%. The increase in flow rate under constant current density also reduced the efficiency of removal as expected. In experiments in which current density and flow rate were examined together, the increase in flow rate allowed the application of higher current densities. This situation led to considerable reductions in energy consumption values, even if the COD removal efficiency did not significantly increase. The high COD removal obtained with the use of high flow rate and high current density indicates that the electrocoagulation process can be used for high flow rate municipal wastewater treatment.

Keywords

References

  1. Y. G. Asfaha, A. K. Tekile, F. Zewge, Cleaner Engineering and Technology, 2021, 4, 100261. https://doi.org/10.1016/j.clet.2021.100261
  2. Q. H. Zhang, W. N. Yang, H. H. Ngo, W. S. Guo, P. K. Jin, S. J. Yang, Q. Wang, X. C. Wang, D. Ao, Environ. Int., 2016, 92, 11-22. https://doi.org/10.1016/j.envint.2016.03.024
  3. S. Sharma, A. Aygun, H. Simsek, Chemosphere, 2020, 249, 126511. https://doi.org/10.1016/j.chemosphere.2020.126511
  4. R. L Vizcaino, C. Saez, P. Canizares, M. A. Rodrigo, Sep. Purif. Technol., 2012, 98, 88-93. https://doi.org/10.1016/j.seppur.2012.07.017
  5. C. Thakur, Int. J. Chem. React. Eng., 2021, 19(9), 961-968. https://doi.org/10.1515/ijcre-2021-0095
  6. G. Varank, S. Guvenc, A. Demir, Sep. Sci. Technol, 2018, 53(17), 2727-2740. https://doi.org/10.1080/01496395.2018.1470643
  7. S. Aoudj, A. Khelifa, N. Drouiche, Chemosphere, 2017, 180, 379-387. https://doi.org/10.1016/j.chemosphere.2017.04.045
  8. N.T. Thuy, N.X. Hoan, D.V. Thanh, P.M. Khoa, N.T. Tai, P.Q.H. Hoang, N.N. Huy, J. Electrochem. Sci. Technol., 2021, 12(1), 21-32. https://doi.org/10.33961/jecst.2019.00444
  9. M.A. Mamelkina, S. Cotillas, E. Lacasa, C. Saez, M.A. Rodrigo, Sep. Purif. Technol., 2017, 182, 87-93. https://doi.org/10.1016/j.seppur.2017.03.044
  10. L. Xu, G. Cao, X. Xu, S. Liu, Q. Huang, J. Environ. Manage., 2017, 204(1), 394-403. https://doi.org/10.1016/j.jenvman.2017.09.020
  11. E. Gatsios, J.N. Hahladakis, E. Gidarakos, J. Environ. Manage., 2015, 154, 117-127. https://doi.org/10.1016/j.jenvman.2015.02.018
  12. A. Deghles, U. Kurt, Chem. Eng. Process.: Process Intensification, 2016, 104, 43-50. https://doi.org/10.1016/j.cep.2016.02.009
  13. M. Dolati, A. A. Aghapour, H. Khorsandi, S. Karimzade, J. Environ. Chem. Eng., 2017, 5(5), 5150-5156. https://doi.org/10.1016/j.jece.2017.09.055
  14. G.F.S. Valente, R.C.S. Mendonca, J.A.M. Pereira, L.B. Felix, Sep. Purif. Technol., 2014, 132, 627-633. https://doi.org/10.1016/j.seppur.2014.05.053
  15. K. Eryuruk, U. Tezcan Un, U. Bakir Ogutveren, J. Clean. Prod., 2018, 172, 1089-1095 https://doi.org/10.1016/j.jclepro.2017.10.254
  16. S. Camcioglu, B. Ozyurt, H. Hapoglu, Process Saf. Environ. Prot., 2017, 111, 300-319. https://doi.org/10.1016/j.psep.2017.07.014
  17. R. Perumalsamy, C. Kumaran, and V. Rajamanickam, J. Electrochem. Sci. Technol., 2021, 12(1), 92-100. https://doi.org/10.33961/jecst.2020.01249
  18. L.S. Thakur, P. Mondal, J. Environ. Manage., 2017, 190, 102-112. https://doi.org/10.1016/j.jenvman.2016.12.053
  19. S. Irdemez, N. Demircioglu, Y.S. Yildiz, Z. Bingul, Sep. Purif. Technol., 2006, 52, 218-223. https://doi.org/10.1016/j.seppur.2006.04.008
  20. M. Kobya, M. Bayramoglu, M. Eyvaz, J. Hazard. Mater., 2007, 148, 311-318. https://doi.org/10.1016/j.jhazmat.2007.02.036
  21. D. Valero, J.M. Ortiz, V. Garcia, E. Esposito, V. Montiel, A. Aldaz, Chemosphere, 2011, 84, 1290-1295. https://doi.org/10.1016/j.chemosphere.2011.05.032
  22. APHA, Standarts Methos of Examination of Water and Wastewater, 23rd. Edition, 2017.
  23. Y.S. Yildiz, E. Senyigit, S. Irdemez, Neural Comput. Appl., 2013, 23, 1061-1069. https://doi.org/10.1007/s00521-012-1031-1
  24. A.S. Koparal, Y.S. Yildiz, B. Keskinler, N. Demircioglu, Sep. Purif. Technol., 2008, 59(2), 175-182. https://doi.org/10.1016/j.seppur.2007.06.004
  25. H.Z. Zhao, W. Yang, J. Zhu, J.R. Ni, Chemosphere, 2009 , 74, 1391-1395. https://doi.org/10.1016/j.chemosphere.2008.11.062
  26. A.M. Ferreira, M. Marchesiello, P.X. Thivel, Sep. Purif. Technol., 2013, 107, 109-117. https://doi.org/10.1016/j.seppur.2013.01.016
  27. M. Kobya, F. Ulu, U. Gebologlu, E. Demirbas, S. Oncel, Sep. Purif. Technol., 2011, 77, 281-293.
  28. A.E. Yilmaz, R. Boncukcuoglu, M.M. Kocakerim, J. Hazard. Mater., 2007, 149, 475-481. https://doi.org/10.1016/j.jhazmat.2007.04.018
  29. O. Gokkus, Y.S. Yildiz, Clean Technol. Environ. Policy, 2015, 17, 1717-1725. https://doi.org/10.1007/s10098-014-0897-2
  30. D.T. Moussa, M.H. El-Naas, M. Nasser, M.J. Al-Marri, J. Environ. Manage., 2017, 186, 24-41. https://doi.org/10.1016/j.jenvman.2016.10.032
  31. S.G. Segura, M. Maesi, S.G. Eibanda, J.V. Melo, C.A.M. Huitle, J. Electroanal. Chem., 2017, 801, 267-299. https://doi.org/10.1016/j.jelechem.2017.07.047
  32. Z. Bingul, S. Irdemez, N. Demircioglu, Int. J. Environ. Anal. Chem., 2021, DOI: 10.1080/03067319.2021.1925261.
  33. U. Tezcan Un, A. Kandemir, N. Erginel, S.E. Ocal, J. Environ. Manage., 2014, 146, 245-250. https://doi.org/10.1016/j.jenvman.2014.08.006