DOI QR코드

DOI QR Code

Boosting Power Generation by Sediment Microbial Fuel Cell in Oil-Contaminated Sediment Amended with Gasoline/Kerosene

  • Aleman-Gama, Elizabeth (Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos) ;
  • Cornejo-Martell, Alan J. (Instituto de Biotecnologia, UNAM) ;
  • Kamaraj, Sathish Kumar (Instituto Tecnologico El Llano (ITEL)/Tecnologico Nacional de Mexico (TecNM), Laboratorio de Cultivos de Tejidos Vegetales) ;
  • Juarez, Katy (Instituto de Biotecnologia, UNAM) ;
  • Silva-Martinez, Susana (Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos) ;
  • Alvarez-Gallegos, Alberto (Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos)
  • 투고 : 2022.01.17
  • 심사 : 2022.03.06
  • 발행 : 2022.05.28

초록

The high internal resistance (Rint) that develops across the sediment microbial fuel cells (SMFC) limits their power production (~4/10 mW m-2) that can be recovered from an initial oil-contaminated sediment (OCS). In the anolyte, Rint is related to poor biodegradation activity, quality and quantity of contaminant content in the sediment and anode material. While on the catholyte, Rint depends on the properties of the catholyte, the oxygen reduction reaction (ORR), and the cathode material. In this work, the main factors limiting the power output of the SMFC have been minimized. The power output of the SMFC was increased (47 times from its initial value, ~4 mW m-2) minimizing the SMFC Rint (28 times from its initial value, 5000 ohms), following the main modifications. Anolyte: the initial OCS was amended with several amounts of gasoline and kerosene. The best anaerobic microbial activity of indigenous populations was better adapted (without more culture media) to 3 g of kerosene. Catholyte: ORR was catalyzed in birnessite/carbon fabric (CF)-cathode at pH 2, 0.8M Na2SO4. At the class level, the main microbial groups (Gammaproteobacteria, Coriobacteriia, Actinobacteria, Alphaproteobacteria) with electroactive members were found at C-anode and were associated with the high-power densities obtained. Gasoline is more difficult to biodegrade than kerosene. However, in both cases, SMFC biodegradation activity and power output are increased when ORR is performed on birnessite/CF in 0.8 M Na2SO4 at pH 2. The work discussed here can focus on bioremediation (in heavy OCS) or energy production in future work.

키워드

과제정보

The authors are grateful for the financial support of the Mexican SEP/CONACyT program.

참고문헌

  1. Y. Hamidi, S. A. Ataei, and A. Sarrafi, J. Chem. Technol. Biotechnol., 2021, 96(5), 1302-1307. https://doi.org/10.1002/jctb.6646
  2. S. Wang, D. Wang, Z. Yu, X. Dong, S. Liu, H. Cui, and B. Sun, Environ. Sci. Process. Impacts, 2021, 23(1), 9-27. https://doi.org/10.1039/D0EM00370K
  3. L. Lawniczak, M. Wozniak-Karczewska, A. P. Loibner, H. J. Heipieper, and L. Chrzanowski, Molecules, 2020, 25(4), 856. https://doi.org/10.3390/molecules25040856
  4. B. M. Coppotelli, A. Ibarrolaza, M. T. Del Panno, and I. S. Morelli, Microb. Ecol., 2008, 55, 173-183. https://doi.org/10.1007/s00248-007-9265-7
  5. A. K. Haritash, and C. P. Kaushik, J. Hazard. Mater., 2009, 169, 1-15. https://doi.org/10.1016/j.jhazmat.2009.03.137
  6. P. Logeshwaran, M. Megharaj, S. Chadalavada, M. Bowman, and R. Naidu, Environ. Technol. Innov., 2018, 10, 175-193. https://doi.org/10.1016/j.eti.2018.02.001
  7. V. G. Grishchenkov, R. T. Townsend, T. J. McDonald, R. L. Autenrieth, J. S. Bonner, and A. M. Boronin, Process Biochem., 2000, 35, 889-896. https://doi.org/10.1016/S0032-9592(99)00145-4
  8. M. Kumar, N. S. Bolan, S. A. Hoang, A. D. Sawarkar, T. Jasemizad, B. Gao, S. Keerthanan, L. P. Padhye, L. Singh, S. Kumar, M. Vithanage, Y. Li, M. Zhang, M. B. Kirkham, A. Vinu, and J. Rinklebe, J. Hazard. Mater., 2021, 420, 126534. https://doi.org/10.1016/j.jhazmat.2021.126534
  9. Y. Huang, H. Pan, Q. Wang, Y. Ge, W. Liu, and P. Christie, Chemosphere., 2019, 224, 265-271. https://doi.org/10.1016/j.chemosphere.2019.02.148
  10. S.G.A. Flimban, I.M.I. Ismail, T. Kim, and S.E. Oh, Energies., 2019, 12, 1-20. https://doi.org/10.3390/en12010001
  11. S. Son, B. Koo, H. Chai, H. V. H. Tran, S. Pandit, and S. P. Jung, J. Water Process Eng., 2021, 40, 101844. https://doi.org/10.1016/j.jwpe.2020.101844
  12. A. A. Pawar, A. Karthic, S. Lee, S. Pandit, and S. P. Jung, Environ. Eng. Res., 2022, 27(1), 200484.
  13. M. Zahid, N. Savla, S. Pandit, V. K. Thakur, S. P. Jung, P. K. Gupta, R. Prasad, and E. Marsili, Desalination., 2022, 521, 115381. https://doi.org/10.1016/j.desal.2021.115381
  14. Y. V. Nancharaiah, S. V. Mohan, and P. N. L. Lens, Removal and Recovery of Metals and Nutrients from Wastewater Using Bioelectrochemical Systems, 2019, 693-720.
  15. M. Quraishi, K. Wani, S. Pandit, P. K. Gupta, A. K. Rai, D. Lahiri, D. A. Jadhav, R. R. Ray, S. P. Jung, V. K. Thakur, and R. Prasad, Fermentation., 2021, 7(291), 1-37.
  16. H. Z. Hamdan, D. A. Salam, A. R. Hari, L. Semerjian, and P. Saikaly, Sci. Total Environ., 2017, 575, 1453-1416. https://doi.org/10.1016/j.scitotenv.2016.09.232
  17. X. Li, R. Zheng, X. Zhang, Z. Liu, R. Zhu, X. Zhang, and D. Gao, J. Environ. Manage., 2019, 235, 70-76. https://doi.org/10.1016/j.jenvman.2019.01.007
  18. C. K. Algar, A. Howard, C. Ward, and G. Wanger, Sci. Rep., 2020, 10, 13087. https://doi.org/10.1038/s41598-020-70002-4
  19. J. Prasad, and R. K. Tripathi, J. Power Sources, 2020, 450, 227721. https://doi.org/10.1016/j.jpowsour.2020.227721
  20. B. Yu, J. Tian, and L. Feng, J. Hazard. Mater., 2017, 336, 110-118. https://doi.org/10.1016/j.jhazmat.2017.04.066
  21. C. E. Reimers, L. M. Tender, S. Fertig, and W. Wang, Environ. Sci. Technol., 2001, 35, 192-195. https://doi.org/10.1021/es001223s
  22. M. Sherafatmand, and H. Y. Ng, Bioresour. Technol., 2015, 195, 122-130. https://doi.org/10.1016/j.biortech.2015.06.002
  23. Z. Guo, J. J. Richardson, B. Kong, and K. Liang, Sci. Adv., 2020, 6, 1-17.
  24. H. Nolvak, N. P. Dang, M. Truu, A. Peeb, K. Tiirik, M. O'Sadnick, and J. Truu, Microorganisms, 2021, 9(12), 2425. https://doi.org/10.3390/microorganisms9122425
  25. G. Mohanakrishna, I. M. Abu-Reesh, S. Kondaveeti, R. I. Al-Raoush, and Z. He, Bioresour. Technol., 2018, 253, 16-21. https://doi.org/10.1016/j.biortech.2018.01.005
  26. S. P. Jung, and S. Pandit, Important Factors Influencing Microbial Fuel Cell Performance, Microbial electrochemical technology, Elsevier, 2019, 377-406.
  27. M. F. Umar, M. Rafatullah, S. Z. Abbas, M. N. Mohamad Ibrahim, and N. Ismail, Int. J. Environ. Res. Public Health, 2021, 18, 3811. https://doi.org/10.3390/ijerph18073811
  28. S. Chen, S. A. Patil, R. K. Brown, and U. Schroder, Appl. Energy, 2019, 15, 233-234. https://doi.org/10.1016/0306-2619(83)90043-0
  29. S. Kerzenmacher, Engineering of Microbial Electrodes, Bioelectrosynthesis, Springer, 2017, 167, 135-180.
  30. Q. Du, J. An, J. Li, L. Zhou, N. Li, and X. Wang, J. Power Sources, 2017, 343, 477-482. https://doi.org/10.1016/j.jpowsour.2017.01.093
  31. H. Rismani-Yazdi, S. M. Carver, A. D. Christy, and O. H. Tuovinen, J. Power Sources, 2008, 180, 683-694. https://doi.org/10.1016/j.jpowsour.2008.02.074
  32. P. Clauwaert, P. Aelterman, T. H. Pham, L. De Schamphelaire, M. Carballa, K. Rabaey, and W. Verstraete, Appl. Microbiol. Biotechnol, 2008, 79, 901-913. https://doi.org/10.1007/s00253-008-1522-2
  33. R. Rudra, V. Kumar, A. Nandy, P. P. Kundu, Performances of Separator and Membraneless Microbial Fuel Cell, 2018, 125-140.
  34. S. W. Hong, I. S. Chang, Y. S. Choi, and T. H. Chung, Bioresour. Technol., 2009, 100, 3029-3035. https://doi.org/10.1016/j.biortech.2009.01.030
  35. K. Y. Kim, W. Yang, and B. E. Logan, Water Res., 2015, 80, 41-46. https://doi.org/10.1016/j.watres.2015.05.021
  36. S. P. Jung, E. Kim, and B. Koo, Chemosphere, 2018, 209, 542-550. https://doi.org/10.1016/j.chemosphere.2018.06.070
  37. C. Fuentes-Albarran, A. Del Razo, K. Juarez, and A. Alvarez-Gallegos, Sol. Energy, 2012, 86, 1099-1107. https://doi.org/10.1016/j.solener.2011.12.011
  38. X. Guo, Y. Zhan, C. Chen, B. Cai, Y. Wang, and S. Guo, Renew. Energy, 2016, 87, 437-444. https://doi.org/10.1016/j.renene.2015.10.041
  39. S. J. Varjani, D. P. Rana, A. K. Jain, S. Bateja, and V. N. Upasani, Int. Biodeterior. Biodegrad., 2015, 103, 116-124. https://doi.org/10.1016/j.ibiod.2015.03.030
  40. D. R. Bond, D. E. Holmes, L. M. Tender, and D. R. Lovley, Science, 2002, 295, 483-485. https://doi.org/10.1126/science.1066771
  41. G. Palanisamy, H. Y. Jung, T. Sadhasivam, M. D. Kurkuri, S. C. Kim, and S. H. Roh, J. Clean. Prod., 2019, 221, 598-621. https://doi.org/10.1016/j.jclepro.2019.02.172
  42. S. Jung, Int. J. Electrochem. Sci., 2012, 7, 1109-11100. https://doi.org/10.1016/S1452-3981(23)16929-X
  43. K. Venkidusamy, M. Megharaj, M. Marzorati, R. Lockington, and R. Naidu, Sci. Total Environ., 2016, 539, 61-69. https://doi.org/10.1016/j.scitotenv.2015.08.098
  44. G. C. Gil, I. S. Chang, B. H. Kim, M. Kim, J. K. Jang, H. S. Park, and H. J. Kim, Biosens. Bioelectron., 2003, 8, 327-334.
  45. Q. Zhao, R. Li, M. Ji, and Z. J. Ren, Bioresour. Technol., 2016, 220, 549-556. https://doi.org/10.1016/j.biortech.2016.09.005
  46. G. Guo, F. Tian, K. Ding, L. Wang, T. Liu, and F. Yang, Int. Biodeterior. Biodegrad., 2017, 123, 56-62. https://doi.org/10.1016/j.ibiod.2017.04.022
  47. B. E. Logan, Chaper 4-Power Generation, Microbial Fuel Cells, John Wiley & Sons, Inc., 2008, 44-60.
  48. B. E. Logan, B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey, Environ. Sci. Technol., 2006, 40, 5181-5192. https://doi.org/10.1021/es0605016
  49. Y. Fan, E. Sharbrough, and H. Liu, Environ. Sci. Technol., 2008, 42, 8101-8107. https://doi.org/10.1021/es801229j
  50. F. Harnisch, and U. Schroder, Chem. Soc. Rev., 2010, 39, 4433-4448. https://doi.org/10.1039/c003068f
  51. Wiesener K, and Ohms D. Electrode kinetics and electrocatalysis of hydrogen and oxygen elecytrode reactions, 1990, 63-103.
  52. E. I. Solomon, and S. S. Stahl, Chem. Rev., 2018, 118, 2299-2301. https://doi.org/10.1021/acs.chemrev.8b00046
  53. Y. Jia, D. Zhang, H. You, W. Li, and K. Jiang, J. Nanoparticle Res., 2019, 21(3), 1-10. https://doi.org/10.1007/s11051-018-4445-6
  54. A. Kundu, J. N. Sahu, G. Redzwan, and M. A. Hashim, Int. J. Hydrog. Energy, 2013, 38, 1745-1757. https://doi.org/10.1016/j.ijhydene.2012.11.031
  55. D. T. Nguyen, and K. Taguchi, Effective Cathode Catalysts for O2 Reduction Reactions, Bioelectrochemical Systems, Springer, 2020, 169-187.
  56. A. Mohanty, D. P. Jaihindh, Y. P. Fu, S. P. Senanayak, L. S. Mende, and A. Ramadoss, J. Power Sources, 2021, 488, 229444. https://doi.org/10.1016/j.jpowsour.2020.229444
  57. B. Koo, and S. P. Jung, Chem. Eng. J., 2021, 424, 130388. https://doi.org/10.1016/j.cej.2021.130388
  58. N. Savla, S. Khilari, S. Pandit, and S. P. Jung, Effective Cathode Catalysts for Oxygen Reduction Reactions in Microbial Fuel Cell, Bioelectrochemical Systems, Springer, 2020, 189-210.
  59. N. Wagner, J. Appl. Electrochem., 2002, 32, 859-863. https://doi.org/10.1023/A:1020551609230
  60. U. Karra, G. Huang, R. Umaz, C. Tenaglier, L. Wang, and B. Li, Bioresour. Technol., 2013, 144, 477-484. https://doi.org/10.1016/j.biortech.2013.06.104
  61. B. Liu, A. Weinstein, M. Kolln, C. Garrett, L. Wang, A. Bagtzoglou, U. Karra, Y. Li, and B. Li, J. Power Sources, 2015, 286, 210-216. https://doi.org/10.1016/j.jpowsour.2015.03.161
  62. A. Gurung, J. Kim, S. Jung, B. H. Jeon, J. E. Yang, and S. E. Oh, Biotechnol. Lett., 2012, 34, 1833-1839. https://doi.org/10.1007/s10529-012-0979-3
  63. P. Dange, N. Savla, S. Pandit, R. Bobba, S. P. Jung, P. Kumar Gupta, M. Sahni, and R. Prasad, J. Renew. Mater., 2022, 10, 665-697. https://doi.org/10.32604/jrm.2022.015806
  64. A. K. Worku, D. W. Ayele, and N. G. Habtu, SN Appl. Sci., 2021, 3, 764. https://doi.org/10.1007/s42452-021-04746-7
  65. Y. L. Cao, H. X. Yang, X. P. Ai, and L. F. Xiao, J. Electroanal. Chem., 2003, 557, 127-134. https://doi.org/10.1016/S0022-0728(03)00355-3
  66. S. Min, and Y. Kim, Minerals, 2020, 10(10), 884. https://doi.org/10.3390/min10100884
  67. K. Michelson, R. E. Alcalde, R. A. Sanford, A. J. Valocchi, and C. J. Werth, Environ. Sci. Technol., 2019, 53, 3480-3487. https://doi.org/10.1021/acs.est.8b04718
  68. C. Fuentes-Albarran, K. Juarez, S. Gamboa, A. Tirado, and A. Alvarez-Gallegos, J. Chem. Technol. Biotechnol., 2020, 95, 3169-3178. https://doi.org/10.1002/jctb.6495
  69. S. B. Ma, K. Y. Ahn, E. S. Lee, K. H. Oh, and K. B. Kim, Carbon, 2007, 45, 375-382. https://doi.org/10.1016/j.carbon.2006.09.006
  70. E. Aleman-Gama, A. J. Cornejo-Martell, A. Ortega-Martinez, S. K. Kamaraj, K. Juarez, S. Silva-Martinez, and A. Alvarez-Gallegos, J. Electroanal. Chem., 2021, 894, 115365. https://doi.org/10.1016/j.jelechem.2021.115365
  71. B. Koo, S. M. Lee, S. E. Oh, E. J. Kim, Y. Hwang, D. Seo, J. Y. Kim, Y. H. Kahng, Y. W. Lee, S. Y. Chung, S. J. Kim, J. H. Park, and S. P. Jung, Electrochim. Acta., 2019, 297, 613-622. https://doi.org/10.1016/j.electacta.2018.12.024
  72. T. Nam, S. Son, E. Kim, H. V. H. Tran, B. Koo, H. Chai, J. Kim, S. Pandit, A. Gurung, S. E. Oh, E. J. Kim, Y. Choi, and S. P. Jung, Environ. Eng. Res., 2018, 23, 383-389. https://doi.org/10.4491/eer.2017.171
  73. H. Liu and B. Logan, ACS Natl. Meet. B. Abstr., 2004, 228, 4040-4046.
  74. H. V. H. Tran, E. Kim, and S. P. Jung, J. Ind. Eng. Chem., 2022, 106, 269-278. https://doi.org/10.1016/j.jiec.2021.11.001
  75. E. Bolyen, J. R. Rideout, M. R. Dillon, N. A. Bokulich, C. C. Abnet, ... and J. G. Caporaso, Nat. Biotechnol., 2019, 37, 852-857. https://doi.org/10.1038/s41587-019-0209-9
  76. N. Das, and P. Chandran, Biotechnol. Res. Int., 2011, 2011, 941810. https://doi.org/10.4061/2011/941810
  77. T. K. Sajana, M. M. Ghangrekar, and A. Mitra, Bioresour. Technol., 2014, 155, 84-90. https://doi.org/10.1016/j.biortech.2013.12.094
  78. P. A. Vieira, R. B. Vieira, S. Faria, E. J. Ribeiro, and V. L. Cardoso, J. Hazard. Mater., 2009, 168, 1366-1372. https://doi.org/10.1016/j.jhazmat.2009.03.023
  79. S. Jung, M. M. Mench, and J. M. Regan, Environ. Sci. Technol., 2011, 45, 9069-9074. https://doi.org/10.1021/es201737g
  80. R. Bartha, and R. M. Atlas, Adv. Appl. Microbiol., 1977, 22, 225-266. https://doi.org/10.1016/S0065-2164(08)70164-3
  81. R. Bartha, Microb. Ecol., 1986, 12, 155-172. https://doi.org/10.1007/BF02153231
  82. D. Massias, V. Grossi, and J. C. Bertrand, Comptes Rendus - Geosci., 2003, 335, 435-439. https://doi.org/10.1016/S1631-0713(03)00062-2
  83. S. Oh, B. Min, and B. E. Logan, Environ. Sci. Technol., 2004, 38, 4900-4904. https://doi.org/10.1021/es049422p
  84. S. E. Oh, and B. E. Logan, Appl. Microbiol. Biotechnol., 2006, 70, 162-169. https://doi.org/10.1007/s00253-005-0066-y
  85. H. Guo, S. Tang, S. Xie, P. Wang, C. Huang, X. Geng, X. Jia, H. Huo, X. Li, J. Zhang, Z. Zhang, and J. Fang, Sci. Rep., 2020, 10, 1-10. https://doi.org/10.1038/s41598-019-56847-4
  86. S. Jung, and J. M. Regan, Appl. Environ. Microbiol., 2011, 77, 564-571. https://doi.org/10.1128/AEM.01392-10
  87. H. Guo, S. Xie, H. Deng, X. Geng, P. Wang, C. Huang, and S. Tang, Environ. Prog. Sustain. Energy, 2020, 39(5), e13409. https://doi.org/10.1002/ep.13409
  88. M. H. in 't Zandt, N. Kip, J. Frank, S. Jansen, J. A. van Veen, M. S. M. Jetten, and C. U. Welte, Appl. Environ. Microbiol., 2019, 85(20), e01369-19.
  89. T. Yamashita, and H. Yokoyama, Biotechnol. Biofuels, 2018, 11, 39. https://doi.org/10.1186/s13068-018-1046-7
  90. S. J. Dunaj, J. J. Vallino, M. E. Hines, M. Gay, C. Kobyljanec, and J. N. Rooney-Varga, Environ. Sci. Technol., 2012, 46, 1914-1922. https://doi.org/10.1021/es2032532
  91. H. Itoh, S. Ishii, Y. Shiratori, K. Oshima, S. Otsuka, M. Hattori, and K. Senoo, Microbes Environ., 2013, 28(3), 370-380. https://doi.org/10.1264/jsme2.ME13030
  92. W. Niyom, D. Komolyothin, and B. B. Suwannasilp, Eng. J., 2018, 22(4), 23-37. https://doi.org/10.4186/ej.2018.22.4.23
  93. C. Muangchinda, R. Pansri, W. Wongwongsee, and O. Pinyakong, J. Appl. Microbiol., 2013, 114, 1311-1324. https://doi.org/10.1111/jam.12128
  94. A. Angelov, S. Bratkova, and A. Loukanov, Energy Convers. Manag., 2013, 67, 283-286. https://doi.org/10.1016/j.enconman.2012.11.024