DOI QR코드

DOI QR Code

Degradation of All-Solid-State Lithium-Sulfur Batteries with PEO-Based Composite Electrolyte

  • Lee, Jongkwan (Korea Institute of Industrial Technology (KITECH)) ;
  • Heo, Kookjin (Korea Institute of Industrial Technology (KITECH)) ;
  • Song, Young-Woong (Korea Institute of Industrial Technology (KITECH)) ;
  • Hwang, Dahee (Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Min-Young (Korea Institute of Industrial Technology (KITECH)) ;
  • Jeong, Hyejeong (Korea Institute of Industrial Technology (KITECH)) ;
  • Shin, Dong-Chan (Department of Advanced Materials Engineering, Chosun University) ;
  • Lim, Jinsub (Korea Institute of Industrial Technology (KITECH))
  • Received : 2021.09.07
  • Accepted : 2021.10.15
  • Published : 2022.05.28

Abstract

Lithium-sulfur batteries (LSBs) have emerged as a promising alternative to lithium-ion batteries (LIBs) owing to their high energy density and economic viability. In addition, all-solid-state LSBs, which use solid-state electrolytes, have been proposed to overcome the polysulfide shuttle effect while improving safety. However, the high interfacial resistance and poor ionic conductivity exhibited by the electrode and solid-state electrolytes, respectively, are significant challenges in the development of these LSBs. Herein, we apply a poly (ethylene oxide) (PEO)-based composite solid-state electrolyte with oxide Li7La3Zr2O12 (LLZO) solid-state electrolyte in an all-solid-state LSB to overcome these challenges. We use an electrochemical method to evaluate the degradation of the all-solid-state LSB in accordance with the carbon content and loading weight within the cathode. The all-solid-state LSB, with sulfur-carbon content in a ratio of 3:3, exhibited a high initial discharge capacity (1386 mAh g-1), poor C-rate performance, and capacity retention of less than 50%. The all-solid-state LSB with a high loading weight exhibited a poor overall electrochemical performance. The factors influencing the electrochemical performance degradation were revealed through systematic analysis.

Keywords

Acknowledgement

This study was conducted with the support of the Korea Institute of Industrial Technology, as "Development of technology for commercialization of anodes for lithium metal batteries by bonding Li/Cu heterogeneous material (KITECH EM-21-0007)".

References

  1. D. Larcher and J. M. Tarascon, Nat. Chem., 2015, 7(1), 19-29. https://doi.org/10.1038/nchem.2085
  2. J. B. Goodenough, Energy Storage Materials, 2015, 1, 158-161. https://doi.org/10.1016/j.ensm.2015.07.001
  3. X. Ye, J. Ma, Y. S. Hu, H. Wei and F. Ye, J. Mater. Chem. A, 2016, 4(3), 775-780. https://doi.org/10.1039/C5TA08991C
  4. D. Lv, J. Zheng, Q. Li, X. Xie, S. Ferrara, Z. Nie, L.B. Mehdi, N. D. Browning, J. G. Zhang, G. L. Graff, J. Liu and F. Xiao, Adv. Energy Mater., 2015, 5(16), 1402290. https://doi.org/10.1002/aenm.201402290
  5. W. Ahn, K. B. Kim, K. N. Jung, K. H. Shin and C. S. Jin, J. Power Sources, 2011, 202, 394-399. https://doi.org/10.1016/j.jpowsour.2011.11.074
  6. T. Hara, A. Konarov, A. Mentbayeva, I. Kurmanbayeva and Z. Bakenov, Front. Energy Res., 2015, 3, 22.
  7. G. G. Eshetu, X. Judez, C. Li, M. Martinez-Ibanez, I. Gracia, O. Bondarchuk, J. Carrasco, L. M. Rodriguez- Martinez, H. Zhang and M. Armand, J. Am. Chem. Soc., 2018, 140(31), 9921-9933. https://doi.org/10.1021/jacs.8b04612
  8. A. Manthiram, Y. Fu, S. H. Chung, C. Zu and Y. S. Su, Chem. Rev., 2014, 114(23), 11751-11787. https://doi.org/10.1021/cr500062v
  9. X. Ji and L. F. Nazar, J. Mater. Chem., 2010, 20(44), 9821-9826. https://doi.org/10.1039/b925751a
  10. L. Chen and L. L. Shaw, J. Power Sources, 2014, 267, 770-783. https://doi.org/10.1016/j.jpowsour.2014.05.111
  11. Y. X. Yin, S. Xin, Y.G. Guo and L. J. Wan, Angew. Chem. Int. Ed. Engl., 2013, 52(50), 13186-13200. https://doi.org/10.1002/anie.201304762
  12. A. Manthiram, Y. Fu and Y. S. Su, Acc. Chem. Res., 2013, 46, 1125-1134. https://doi.org/10.1021/ar300179v
  13. Y. Zhang, Y. Zhao, Z. Bakenov, M. Tuiyebayeva and A. Konarov, P. Chen, Electrochim. Acta, 2014, 143, 49-55. https://doi.org/10.1016/j.electacta.2014.07.148
  14. N. Li, M. Zheng, H. Lu, Z. Hu, C. Shen, X. Chang, G. Ji, J. Cao and Y. Shi, Chem. Commun., 2012, 48(34), 4106-4108. https://doi.org/10.1039/c2cc17912a
  15. G. Zheng, Y. Yang, J. J. Cha, S. S. Hong and Y. Cui, Nano Lett., 2011, 11(10), 4462-4467. https://doi.org/10.1021/nl2027684
  16. D. Wang, A. Fu, H. Li, Y. Wang, P. Guo, J. Liu and X.S. Zhao, J. Power Sources, 2015, 285, 469-477. https://doi.org/10.1016/j.jpowsour.2015.03.135
  17. M. Yan, W. P. Wang, Y. X. Yin, L. J. Wan and Y. G. Guo, J. Energy Chem., 2019, 1(1), 100002.
  18. H. Ben youcef, O. Garcia-Calvo, N. Lago, S. Devaraj and M. Armand, Electrochim. Acta, 2016, 220, 587-594. https://doi.org/10.1016/j.electacta.2016.10.122
  19. Y. Z. Sun, J. Q. Huang, C. Z. Zhao and Q. Zhang, Sci. China Chem., 2017, 60(12), 1508-1526. https://doi.org/10.1007/s11426-017-9164-2
  20. R. Murugan, V. Thangadurai and W. Weppner, Angew. Chem. Int. Ed., 2007, 46(41), 7778-7781. https://doi.org/10.1002/anie.200701144
  21. L. Bai, W. Xue, Y. Li, X. Liu, Y. Li and J. Sun, Ceram. Int., 2018, 44(7), 7319-7328. https://doi.org/10.1016/j.ceramint.2018.01.190
  22. X. Tao, Y. Liu, W. Liu, G. Zhou, J. Zhao, D. Lin, C. Zu, O. Sheng, W. Zhang, H.W. Lee and Y. Cui, Nano Lett., 2017, 17(5), 2967-2972. https://doi.org/10.1021/acs.nanolett.7b00221
  23. L. Chen, Y. Li, S. P. Li, L. Z. Fan, C. W. Nan, and J. B. Goodenough, Nano Energy, 2018, 46, 176-184. https://doi.org/10.1016/j.nanoen.2017.12.037
  24. G. Radhika, K. Krishnaveni, C. Kalaiselvi, R. Subadevi and M. Sivakumar, Polym. Bull., 2020, 77(8), 4167-4179. https://doi.org/10.1007/s00289-019-02963-0
  25. S. Ohta, T. Kobayashi, J. Seki and T. Asaoka, J. Power Sources, 2012, 202, 332-335. https://doi.org/10.1016/j.jpowsour.2011.10.064
  26. Q. Wu, X. Zhou, J. Xu, F. Cao and C. Li, ACS Nano, 2019, 13(8), 9520-9532. https://doi.org/10.1021/acsnano.9b04519
  27. Z. W. She, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P. C. Hsu and Y. Cui, Nat. Commun., 2013, 4(1), 1-6.
  28. L. Borchardt, M. Oschatz and S. Kaskel, Chem. Eur, J., 2016, 22(22), 7324-7351. https://doi.org/10.1002/chem.201600040
  29. M. Rana, S. A. Ahad, M. Li, B. Luo, L. Wang, I. Gentle and R. Knibbe, Energy Storage Mater., 2019, 18, 289-310. https://doi.org/10.1016/j.ensm.2018.12.024