DOI QR코드

DOI QR Code

Comparative Study of Nickel and Copper Catalysts Using Al2O3 and Hydrotalcite in Methanol Steam Reforming

메탄올 수증기 개질반응에서 알루미나 및 하이드로탈사이트를 이용한 니켈 및 구리 촉매 비교 연구

  • Lee, Jae-hyeok (Dept. of Chemical Engineering, Sunchon National University) ;
  • Jang, Seung Soo (Dept. of Polymer.Chemical.Chemical Engineering, Sunchon National University) ;
  • Ahn, Ho-Geun (Dept. of Chemical Engineering, Sunchon National University)
  • 이재혁 (순천대학교 화학공학과) ;
  • 장승수 (순천대학교 고분자.화학.화학공학과) ;
  • 안호근 (순천대학교 화학공학과)
  • Received : 2022.03.15
  • Accepted : 2022.04.18
  • Published : 2022.04.30

Abstract

In this study, the catalytic reaction characteristics for producing hydrogen using methanol steam reforming were investigated. Nickel and copper are frequently used in steam reforming reaction and methanol synthesis, were used as main active metals. As a support, hydrotalcite has a high specific surface area, excellent porosity and thermal stability, and has weak Lewis acid sites and basic properties. Hydrotalcite was used to identify catalysts of methanol steam reforming with catalytic activity and their properties. In this research, high reactivity was shown in the catalyst of copper metal with high reducibility. And increasing of active metal loading showed the higher the methanol conversion and hydrogen selectivity.

본 연구에서는 메탄올 수증기 개질 반응을 이용하여 수소를 제조할 수 있는 촉매 반응 특성을 조사하였다. 메탄의 수증기 개질 반응시 자주 사용되는 니켈, 그리고 메탄올 합성 시 자주 사용되는 구리를 주 활성금속으로 사용하였으며, 지지체로는 다공성 및 열적 안정성이 우수하고, 높은 비표면적, 약한 루이스 산점과 염기성을 가지고 있는 하이드로탈사이트를 이용함으로서 높은 활성을 가지는 촉매와 그 특성에 대해서 파악하였다. 본 연구에서는 환원성이 높은 구리금속의 촉매에서 높은 반응성을 나타내었으며, 각각의 촉매에서는 함침량이 높아질수록 메탄올 전환율 및 높은 수소 선택도를 보여 주었다.

Keywords

Acknowledgement

본 연구는 광주전남지역혁신플랫폼 미래형운송기기육성사업의 연구비 지원으로 수행되었으며, 지원에 감사를 드립니다.

References

  1. International Energy Agency (IEA), "Renewables 2020 Analysis and forecast to 2025"(2020)
  2. Balat, M., "Potential Importance of Hydrogen as a Future Solution to Environmental And Transportation Problems," Int. J. Hydrogen Energy, 33(15), 4013-4029, (2008) https://doi.org/10.1016/j.ijhydene.2008.05.047
  3. Demirbas, A., and Dincer, K., "Sustainable Greed Diesel: A Futuristic View," Energy Sources, Part A., 30(13), 1233-1241, (2008) https://doi.org/10.1080/15567030601082829
  4. Roman J., Santhanam, K. S. V., Miri, Massoud J., Bailey, Alla V., Takacs, Gerald A. Introduction to hydrogen Technology. John Wiley & Sons, (2008)
  5. Meshkini, F., Taghizadeh, M. and Bahmani, M. "Investigating the Effect of Metal Oxide Addivites on the Properties of Cu/ZnO/Al2O3 Catalysts in Methanol Synthesis from Syngas Using Factorial Experimental Design," Fuel, 89, 170-175, (2010) https://doi.org/10.1016/j.fuel.2009.07.007
  6. Peppley, B. A., Amphlett, J. C., Kearns, L. M. and Mann, R. F., "Methanol-steam Reforming on Cu/ZnO/Al2O3 Catalysts. Part 2. A Comprehensive Kinetic Model," Appl. Catal. A: Gen., 179, 31-49, (1999) https://doi.org/10.1016/S0926-860X(98)00299-3
  7. Jones., S. D., Neal, L. M. and Hagelin-Weaver, H. E., "Steam Reforming of Methanol Using Cu-ZnO Catalysts Supported on Nanoparticle Alumina," Appl. Catal. B: Environ., 84, 631-642, (2008) https://doi.org/10.1016/j.apcatb.2008.05.023
  8. Lindstrom, B., Pettersson, L. J. and Govind Menon, P., "Activity and Characterization of Cu/Zn, Cu/Cr and Cu/Zr on γ-alumina for Methanol Reforming for Fuel Cell Vehicles," Appl. Catal. A: Gen., 234, 111-125, (2002) https://doi.org/10.1016/S0926-860X(02)00202-8
  9. Rynkowski, J.M.; Paryjczak, T.; Lenik, M., On the nature of oxidic nickel phases in NiO/γ-Al2O3 catalysts. Appl. Catal. A Gen. 106, 73-82, (1993) https://doi.org/10.1016/0926-860X(93)80156-K
  10. Zielinski, J. Morphology of nickel/alumina catalysts. J. Catal. 76, 157-163, (1982) https://doi.org/10.1016/0021-9517(82)90245-7
  11. Negrier, F.; Marceau, E.; Che, M.; de Caro, D. Role of ethylenediamine in the preparation of alumina-supported Ni catalysts from [Ni(en)2(H2O)2] (NO3)2: From solution properties to nickel particles. Comptes Rendus Chim. 6, 231-240, (2003) https://doi.org/10.1016/S1631-0748(03)00026-2
  12. Zhang, X.; Liu, J.; Jing, Y.; Xie, Y. Support effects on the catalytic behavior of NiO/Al2O3 for oxidative dehydrogenation of ethane to ethylene. Appl. Catal. A Gen. 240, 143-150, (2003) https://doi.org/10.1016/S0926-860X(02)00426-X
  13. Jiang, Z., Kong, L., Chu, Z., France, L. J., Xiao, T., & Edwards, P. P. Catalytic combustion of propane over mixed oxides derived from CuxMg3-xAl hydrotalcites. Fuel, 96, 257-263, (2012) https://doi.org/10.1016/j.fuel.2011.11.027
  14. Shen, J. P. and Song, C., "Influence of Preparation Method on Performance of Cu/Zn-based Catalysts for Low-temperature Steam Reforming and Oxidative Steam Reforming of Methanol for H2 Production for Fuel Cells," Catal. Today, 77, 89-98, (2002) https://doi.org/10.1016/S0920-5861(02)00235-3
  15. Breen, J. P. and Ross, J. R. H., "Methanol Reforming for Fuel-cell Application: Development of Zirconia-containg Cu-Zn-Al Catalysts," Catal. Today, 51, 521-533, (1999) https://doi.org/10.1016/S0920-5861(99)00038-3
  16. J. E. Park, J. Park, S. Yim, C. S. Kim, E. D. Park "A Comparative Study of Commercial Catalysts for Methanol Steam Reforming" Korean Chem. Eng. Res., 49, 21-27, (2011) https://doi.org/10.9713/kcer.2011.49.1.021
  17. Sandra Sa, Hugo Silva, Lucia Brandao, Jose M. Sousa, Adelio Mendes, Catalysts for methanol steam reforming-A review Appl. Catal. B, 99, 43-57, (2010) https://doi.org/10.1016/j.apcatb.2010.06.015
  18. Kudo, S., Maki, T., Miura, K. and Mae, K., "High Porous Carbon with Cu/ZnO Nanoparticles Made by the Pyrolysis of Carbon Material as a Catalyst for Steam Reforming of Methanol and Dimethyl Ether," Carbon, 48, 1186-1195, (2010) https://doi.org/10.1016/j.carbon.2009.11.042