DOI QR코드

DOI QR Code

오리피스형 공기분사기 생성 기포소음 추정 연구

A study on the estimation of bubble noise generated by orifice type bubble generators

  • 박철수 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 정소원 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 김건도 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 문일성 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 김인강 (한국해양과학기술원 부설 선박해양플랜트연구소)
  • 투고 : 2022.03.16
  • 심사 : 2022.04.13
  • 발행 : 2022.05.31

초록

본 논문에서는 오리피스형 공기분사기에서 생성된 기포소음 특성을 고찰하였다. 전반적인 기포소음 특성을 파악하기 위해 Strasberg와 Blake가 각각 제안한 기포소음 스펙트럼을 살펴보았고, 기포소음 계측을 위해 선박해양플랜트연구소의 대형캐비테이션터널에서 공기분사 실험을 수행하였다. 본 실험은 5종의 공기분사기를 이용하여 정지 유체 조건과 유동 조건에서 수행되었다. 계측결과로부터 실험 조건에 따른 기포소음 스펙트럼 특성을 관찰하였고, 회귀분석을 통해 기포소음에 대한 인자별 영향을 분석하였다. 끝으로 회귀분석 결과를 기반으로 기포소음 추정식을 제안하였고 제안된 추정식은 계측결과와 잘 일치함을 확인하였다.

In this paper, noise characteristics of bubbles created by an orifice-type bubble generator are studied. In order to understand the overall bubble noise characteristics, the bubble noise spectra proposed by Strasberg and Blake, respectively, are examined, and an air injection experiment was performed in the large cavitation tunnel of KRISO to measure the bubble noise. The experiments were performed under a quiescent condition and flow conditions using 5 types of air bubble generator. From the measurement results, the characteristics of the bubble noise spectrum according to the experimental conditions are observed, and the effect of each parameter on bubble noise is analyzed by regression analysis. Finally, empirical models based on the regression analysis for bubble noise are presented, and it is confirmed that the estimated bubble noise is in good agreement with the measured results.

키워드

과제정보

본 논문은 방위산업기술지원센터의 "공기분사를 이용한 함정 수중방사소음 저감 기술"(PGS4220, 계약번호: UC200002D)의 지원에 의해 수행되었습니다.

참고문헌

  1. IFAW (International Fund for Animal Welfare), "Ocean Noise: Turn it down: A report on ocean noise pollution," IFAW, Rep., 2008.
  2. W. J. Richardson, C. R. Greene, Jr., C. I. Malme, and D. H. Thomson, Marine Mammals and Noise (Academic Press, New York, 1995), pp. 101-158.
  3. B. Wursig, C. R. Greene, and T. A. Jefferson, "Development of an air bubble curtain to reduce underwater noise of percussive piling," Marine Environmental Research, 49, 79-93 (2000). https://doi.org/10.1016/S0141-1136(99)00050-1
  4. J. C. Kim, B. H. Heo, and D. S. Cho, "Noise reduction effect of an air bubble layer on an infinite flat plate considering the noise of multi-bubbles" (in Korean), Trans. Korean Soc. Noise Vib. Eng. 1222-1230 (2009). https://doi.org/10.5050/KSNVN.2009.19.11.1222
  5. C. Park, S. W. Jeong, G. D. Kim, I. Moon, and G. Yim, "A study on the estimation of bubble size distribution using an acoustic inversion method" (in Korean), J. Acoust. Soc. Kr. 39, 151-162 (2020).
  6. C. Park, S. W, Jeong, G. D. Kim, I. Moon, and G. Yim, "Acou stic insertion loss by a bu bble layer for the application to air bubble curtain and air masker" (in Korean), J. Acoust. Soc. Kr. 39, 227-236 (2020).
  7. C. Park, S. W, Jeong, G. D. Kim, I. Moon, and G. Yim, "An empirical model of air bubble size for the application to air masker" (in Korean), J. Acoust. Soc. Kr. 40, 320-329 (2021).
  8. K. W. Frizell and R. E. A. Arndt, "Noise generation of air bubbles in water: an experimental study of creation and splitting," Univ. of Minnesota. Tech. Rep., 1987.
  9. M. Minnaert, "Musical air bubbles and the sounds of running water," Phil. Mag. 16, 235-248 (1933). https://doi.org/10.1080/14786443309462277
  10. M. Strasberg, "Gas bubble as sources of sound in liquids," J. Acoust. Am. 28, 20-26 (1956). https://doi.org/10.1121/1.1908212
  11. W. K. Blake, Mechanics of Flow-Induced Sound and Vibration (Academic Press, New York, 1986), pp. 370-481.
  12. L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics (John Wiley & Sons, 2000), pp. 1-36.
  13. E. C. Myer and R. C. Marboe, "Air emission into a water shear layer through porous media: Part 1 - scaling of bubble creation noise," in Handbook of Cavitation and Gas-Liquid Flow in Fluid Machinery and Devices. FED-Volume 190, edited by T. J. O'Hern, J. H. Kim, W. B. Morgan, and O. Furuya (ASME, New York, 1994).
  14. P. J. Huber, "Robust estimation of a location parameter," Ann. Math. Statist. 35, 73-101 (1964). https://doi.org/10.1214/aoms/1177703732
  15. M. Iguchi and T. Chihara, "Water model study of the frequency of bubble formation under reduced and elevated pressure," Metall. Mater. Trans. B, 29B, 755-761 (1998). https://doi.org/10.1007/s11663-998-0134-7
  16. C. Martinez-Bazan, J. L. Montanes, and J. C. Lasheras, "On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency," J. Fluid. Mech. 401, 157-182 (1999). https://doi.org/10.1017/S0022112099006680
  17. S. Sutardi, "The rate of turbulent kinetic energy dissipation in a turbulent boundary layer on a flat plate," IPTEK J. Proceeding Series, 1, 63-66 (2014).