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1. Introduction

Bin-picking technology adopted 3D vision 

scanning will recognize the position information of 

the materials. Vision tools are beneficial to the 

robots to identify the item to be manipulated as 

well as its orientation in the working area, and to 

identify the region of space where items should be 

placed after manipulation[1]. The automation process 

of such procedure will improve and entrench the 

company to have an allowance of seamless flow of 
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ABSTRACT

To keep pace with Industry 4.0, it is imperative for companies to redesign their working environments by 

adopting robotic automation systems. Automation lines are facilitating the latest cutting-edge technologies, such as 3D 

vision and industrial robots, to outdo competitors by reducing costs. Considering the nature of the manufacturing 

industry, a time-saving workflow and smooth linkwork between processes is vital. At Dellics, without any additional 

new installation in the automation lines, only a few improvements to the working process could raise productivity. 

Three requirements are the development of gripping technology by utilizing a 3D vision system for the recognition 

of the material shape and location, research on lighting projectors to target long distances and high illumination, and 

testing of algorithms/software to improve measurement accuracy and identify products. With some of the functional 

requisites mentioned above, improved robotic automation systems should provide an improved working environment 

to maximize overall production efficiency. In this article, the ways in which such a system can become the 

groundwork for establishing an unmanned working infrastructure are discussed.
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Fig. 1 Manufactured Products

nonstop operation. In turn, this will increase the 

overall productivity, cost reduction, and improvement 

of the working condition. Fig. 1 below shows the 

produced products of kappa cylinder block (a), g15 

dtf head (b), oil pan (c), and spindle (d) all – 

relevant components to build engines of the 

commercial automotive and heavily equipped 

vehicles.

Before 3D vision being applied to the automation 

line, the workers on the shop floor had to manually 

load the materials onto the slotting belt lines. If the 

materials are too heavy, air hoists are being utilized 

to help transport. 

This paper will navigate and explore the 

connectivity of needs and its necessity of the 3D 

vision, robot operations, and material loading 

stations to consummate already established 

automation lines to promote better productivity and 

to wane down the facility downtime.

1) Installation of 3D vision will alternate the 

manual power to load the materials into the 

automation lines.

2) Through the scanning technology, 3D vision 

will be the eyes of the robot operations to 

execute bin picking methods.

3) The algorithms and binarization methods will 

calculate the object region detection to operate 

robot hands and grippers.

These solutions facilitate quality control in 

production lines, better process efficiency with more 

productivity, lower manufacturing costs with higher 

profit margins, and also help to achieve improved 

presentation for customer requests[2].

2. 3D Vision System

2.1 3D Vision System for Automation

We have implemented to facilitate the robotic 

automatic system, development of hand grippers, and 

putting the 3D vision system into the plant that is 

essential for the automation of material handling.

Detailed information on such process is as 

following: 1) repetitive accuracy of robotic location is 

aimed at within 0.11 mm and its core procedure is to 

maintain the horizontal level of table and bed, 2) 

product perpendicularity is at within 0.5 mm and its 

core procedure is to adopt either contact method of 

the robot gripper or practical use of scale sensor, 3) 

use of two robot grippers instead of one, and 

incorporation of rotary motion, and 4) scanning scope 

targeted at 300 mm or more and this will be 

conjugated with camera and scanning technology. 

While carrying out the manufacturing task using 

industrial robots is the main purpose, the more 

critical aspect is that the built-in sensor precision of 

robot gripper  is what directly related to the human 

safety of the workforce. One of the key components 

of smart factory adopted to this project is sensors. 

Conventional 2D vision systems have a serious 

limitation, since they require loading of parts on the 

flat surface by an operator using slip sheets or 

pallets. To cope with these challenges and to overstep 

the threshold, utilization of 3D vision camera for the 

material allocations and its input has been carried out. 

Bin-picking process is the core of this technology 

through utilization of the 3D recognition and feedback 
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of the position information of the materials. The 

robotic system with the 3D vision recognizes 

randomly positioned materials, selects the target part, 

picks up the part, and relocates it to the desired 

location. In other words, it is a system with eyes 

applied to the robots. Such eyes may show slowdown 

of the image recognition depending on the condition 

of the parts and lighting situations. Based on the 

socio-technical perspective, three aspects of 

organization, human, and technology are closely 

intertwined to maximize and utilize the efficiency of 

smart factory[3].

In order to generate the better result, Sauvola 

binary algorithm is used to calculate the average and 

standard deviation. As a result, real time image 

processing has improved. Information extracted from 

the image data has been passed onto the robot, 

implementation of the loading and unloading of the 

raw materials is then to be embodied. With projector 

and camera, the 3D vision system can scan large 

scale of manufactured crafts. Originally, engineers and 

workers had to manually insert materials into the 

automation lines. In terms of productivity, this was a 

very inefficient process. Void in between the time of 

lunch and breaktimes also resulted in the productivity 

drop. Function allocation of man/machine shows that 

in highly automated systems, manual tasks are mainly 

embedded in human supervisory control tasks and 

maintenance operations[4]. Amongst the 3D vision 

functionality, sensors are pivotally vital. These are 

devices that have the ability to self-organize, learn, 

and maintain environmental information to analyze 

behaviors and abilities[5].  

2.2 Impact of Lighting Condition on 3D 

Vision System Performance

For the particular work environment of the 

automation line, the lighting condition is relatively 

bright compare to other manufacturing lines. Thus, 

the image recognition through 3D vision is noticeably 

low. In order to resolve the lighting issue, 3D vision 

for short distance can be an option. Due to the 

interference of the manipulator gripper movement and 

concern for the productivity reduction, long distance 

3D module is adopted. Such module also retains with 

problems that it adds weaker points to its 

functionality, as it is exposed to even more extreme 

lighting conditions throughout the daylight and night. 

The optimal lighting projection for its intensity is 

rated at 400 lumen. It is only applicable to the 

indoor lightings where exterior lighting is completely 

cut off and adaptable for short distance range of 

bin-picking. In order to promote functional and clear 

images of the parts, higher lighting intensity re 

desirable in range of 700~2000 lumen. In addition, to 

measure the intensity of surrounding lights during the 

daylight or night, additional optical sensors are 

applied. The artificial intelligence-based algorithms 

calculate the optimal gripping points and orientation 

to pick up the parts from the pallet. Through this 

measure, engineering process becomes faster, and 

manufacturing process can be improved[6].

The first application of the 3D vision system for 

the automation lines is U-oil pan line. Such product 

is adopted to 1.6 liter diesel engines. It is 

assembled to the lower part of the engine block to 

keep the engine oil from draining. Fig. 2 shows the 

assembled oil pan to the lower part of the engine. 

3D vision test results are shown in Table 1. 

Some of the disadvantages and risk concerns for 

this installation is at the lighting. The sensors 

equipped on 3D vision are highly sensitive to the 

sunlight. Some of the automation lines are 

repeatedly reported to have constant malfunctions 

caused by such issue. Visions fail to scan the 

products because of the incoming lights from 

outside of the factory building. As response, the 

company had to set up awning shades to block the 

lights. It has been partially effective thus far. Also, 

from time to time, visions fail to read the pattern, 

not responding from recognizing the raw material 

image. This is because the quality and quantity of
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Fig. 2 Automotive engine with the old type oil pan

captured data is dependent on the pose of the vision 

system relative to the target object. This is 

particularly true for shiny surfaces, which can 

adversely scatter the illumination provided by the 

vision system such that it cannot be detected by 

cameras in the system[7]. 

   Along with 30 manufactured goods for the trial, 

the testing had gone through few modulations of 

bright control, procuring the optimal brightness of 

the lighting. 1,256 lumen around 9:00 to 11:00 AM 

and 1,394 lumen from 13:00 to 15:00 in the 

afternoon. The experimental standard deviation for 

the morning was 55.5 lumen and 68.7 lumen in the 

afternoon. Fig. 3 shows the awning shades installed 

upon the vision camera at the carrier camshaft 

assembly line and oil pan line. These shades are 

put on top of the 3D vision cameras to block the 

incoming lights from the outside of the factory 

buildings. They have helped projectors and 3D 

visions to elaborate the optimum imaging results.

Test Period 2020.1.12 ~ 2020.10.12

Total Output 2,790

Number of Errors 42

Error Rate 1.5% (vision recognition 
success rate: 98.5%)

Table 1 Measurement results

Fig. 3 Awning shades upon the vision cameras

2.3 3D Vision System Algorithms and Test 

Results 

Determination of the X, Y, Z coordinates of the 

parts from the 3D scanning is done at a height of 

about 3 m for engine block bin-picking. Depending 

on the condition of the part and the lighting, the 

reflection or shading hinders the determination of 

the position of the part. This results in slow-down 

of the real-time image processing. In order to 

minimize the effect of reflections coming from the 

product surface, the image enhancement algorithm 

has been applied.

To ensure the part position and orientation 

precisely, the maximum axis information that is 

passing the product center point is to be extracted 

by utilizing the central moment. Reflective materials 

such as aluminum tends to show irregular internal 

brightness level from the object area. The adaptive 

binarization method is used to detect distorted object 

regions due to lighting effects by dividing the 

image into local regions and setting a threshold 

according to the distribution of the brightness values 

of pixels for each local region. The binarization 

process for object region detection is performed 
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using the improved algorithm of the Sauvola 

method, which has the best performance among 

adaptive binarization methods.

  





 




In Eq. (1), the threshold value t(x, y) is 

calculated while using mean value of m(x, y) at the 

regional area and standard deviation of s(x, y). By 

utilizing the principle of Viola and Jones integral 

image, the mean and standard deviation can be 

calculated at high speed regardless of the size of 

the local area. As a result, under the natural 

lighting condition, the time of the location detection 

has shortened from average 2.5 s to 1.8 s. Fig. 4 

shows shooting of the image, sample, and detection 

result. 2D image is shown from picture (a), its 

decoded image is shown in picture (b) and picture 

(c) displays the 3D depth image. For the data 

transmission, the projector generates gray code – 

which is often used as code for input/output device 

or analog-digital converter. Then, the camera input 

is to follow. When the picture intake is done, the 

composite video signal is separated to the 

component video signal through decoding process. 

After the preliminary stage, the coordinates of camera

Fig. 4 3D vision scanning of engine blocks and its 

detected location 

and projector calibrates to demonstrate 2D, decoded, 

and 3D depth pictures as shown in Fig. 5. To 

understand the aim, the program extracts the feature 

points from the images taken and then recognizes 

its target. 

Once the feature points are derived, the program 

then goes repetitive tasks of deep learning process 

of learn, detect, and recognition. Because the 

learned objects and its relevant images have to be 

embedded to the program, the algorithm does not 

trace the novel objects thrown into the existing 

pallets. Fig. 5 shows the extraction of the feature 

points and its deep learning process. Model object 

(a) is configured for the feature point extractions 

(b). After the process, the images are recognized as 

shown in (c) .

After the feature extraction, to validate the image 

confirmation, the program under goes the deep 

learning process. In Fig. 6, the program learns 

images for the extraction to recognize them.

All the data above are to elicit the core 

algorithm of Point Feature Histogram(PFH). PFH is 

to generalize the average curve value around the 

points to extract characteristics or special features of 

the object. Within radius R, all the points are 

paring up with its neighboring points to calculate 

the fixed coordinate frame by using their normal.

Fig. 5 Feature extractions
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Fig. 6 Deep learning process

Fig. 7 The black lines of normal values are shown 

after the extraction

The figures below show the image of the feature 

point extractions and drawings to explain PFH. In 

Fig. 7, the normal values are embodied as black 

lines after the feature extraction. Fig. 8 illustrates 

the coordinate frames and established point pairs to 

show the point feature histogram.

Fixed coordinate frame is then used to calculate 

the difference between the normal to set the 

triangular variables. This variable is stored along 

with Euclidean distance between points. After all the 

prerequisites from above, then vision camera 

recongnizes each individual part that is loaded on 

the pallet, deciding which part to grip on next in 

the chronological order. It provides 3D location 

information to robot controller and robot clamps the 

products regular sequence, putting them to the next 

manufacturing process. Currently, the 3D vision 

technology is primarily utilized to small products 

that are around 300 mm. For this project however, 

cameras and projectors are enabling to handle large 

size of working crafts up to 1,000mm. Table 2 

below shows the specifications of the vision camera.

Fig. 9 displays the vision camera (a) and the oil 

pan material pallet (b). Table 3 shows the 

improvement of average daily production output by 

16% after the 3D vision system implementation. 

Table 4 indicates that the overall productivity has 

increased by reducing the dowtime from 57.6 hrs to 

17 hours 17% increase in the operational — 

efficiency. Defective rate has dropped to 0.1% from

(a) Point pairs established

(b) Fixed coordinate frame and angular features 

computed for one of the parts

Fig. 8 Point feature histogram
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Pixel 5.0 MP (75 FPS)

Resolution 2488 x 2048 Pixel

Scan Range Max 1100 x 1100 x 
1100 mm

Working Distance Max 3200 mm

Spatial Resolution 5lp mm

Scan Time < 0.3 ms

Operating Temperature 0~40 ℃

Table 2 Vision camera data

Criteria Before the 
Development 

After the 
Development 

Production 
Output 275 320

Table 3 3D vision implementation results: comparison 

of daily production output 

Criteria 
Targeted 
Operating 

Hour
Downtime Operational 

Rate

Before the 
Development 288 hrs 57.6 hrs 75 %

After the 
Development 288 hrs 17 hrs 92 %

Table 4 Operational downtime rate

Criteria Production 
Output

Daily 
Defects

Daily 
Defect Rate

Before the 
Development

3850
(275/day) 8.2 0.3 %

After the 
Development

5440 
(320/day) 3.2 0.1 %

Table 5 Defect rate results

Fig. 9 Vision camera sensor and the oil pan 

material pallet

0.3% as shown in Table 5. This implies that the 

employment of the 3D vision system also improves 

the overall quality of products.

This fact emphasizes the importance of the role 

of the 3D vision system for the improved 

automation operation. The juxtaposition of the 3D 

vision with the robot control of the material input 

would not only bring the working accommodation 

but would definitely fill in the void even when the 

workers are absent from the scenes. The Machine 

vision is used as sensor and the primary function of 

them is to drive the robotic arms to the right 

location of desired object for pick-and-place 

depending on the robot’s degree of freedom[8].

3. Implementation of Novel Robotic 

Grippers

3.1 Development of Grippers

Conventional ways of material clamping have 

limitation in speeding up the manufacturing work 

flow. While upgrading the gripping capability, we 

have tested the actual time difference and production 

disparity between manual and robot hand guided 

material clamping. To hold and grip onto the part, a 

special jaw is attached on the tip of each air cylinder 

load. When the jaw is in action to move around, a 

linear motion guide is attached in order to enhance 

secure gripping. Each cylinder load is assigned to 

work on the other end from another to prevent any 

slip and tips are adhered to the end of each jaw in 

accordance of the exterior shape of the products. 

Conventional jaws to the machine are allowed to 

clamp from the outside skirts of the products. Since 

parts loaded onto the pellets are densely and closely 

packed togather, conventional jaws have limitation in 

picking them up properly. Hence a special customized 

jaw has been developed such a way that the gripper 

can hold on from the inside of the parts. The picture 

of gripper is shown in Fig. 10.
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Fig. 10 Customized design of the gripper

To hold on to the part, the gripper is attached on 

each end of the robot hand at traversal degree. The 

gripper holder is removable with the robot in the 

center. Based on the working condition, it can be 

replaced with slab holder and others. When the 

grippers are loading the materials onto the machines, 

the robot facilitates the scale sensor to ascertain the 

deviation of right and left while maintaining 

perpendicularity and parallelism. When the scale 

sensors are not activated, “V” block shape function 

can be used to maintain the perpendicularity that is 

achieved by closely adhering to the right angle of 

the corner of the machine jig with an air cylinder. 

The mechanism of such process is designed to 

utilize two hands with one gripper rotating 360, having 

the robot axis in the center. Once the robot reaches out 

for the part, the degree of perpendicularity is adjusted 

by the contact method. The distance variation of scale 

cylinder x1 and x2 by measuring out, the material 

perpendicularity is confirmed within 0.5 mm. Before 

going into the machining process, few minor steps 

are to follow to relocate the materials into the right 

position. Fig. 11 shows a rollover machine and 

gripping correction jigs that are utilized to place the 

materials into the right orientation and position. Fig. 

12 illustrates the overall manufacturing layout of 

robot hand grippers, 3D vision, and hydraulic jigs 

of rear flange automation line.

Fig. 11 Rollover machine and grip correction jigs

3.2 Test Results

An automation line for rear flange production has 

been selected as the testbed to undergo for these 

particular comparisons. The manual clamping time 

of the rear flange line took about average 100 

seconds per item to load. Our targeted goal was to 

drop down to 35 seconds or below. To initiate the 

time measurement, the 3D vision recognition is the 

first to begin with. The robot gripper clamps the 

material, moves around to go into the machines, and 

settles the product onto the jig. Testing repeated ten 

times and the average loading time was measured at 

33.2 seconds.

4. Conclusion

The introduction of new digital technology imposes 

challenges and the entire workforce needs to evolve 

as the digital transformation process unfolds[9]. If the 

organizational changes caused by Industry 4.0 are not 

taken into account, this may lead to considerable 

problems, reduced potentials, and delays in the 

implementation of Industry 4.0[10]. Nevertheless, 

Industrial automation is intended to improve factory 

productivity, product quality and overall cost 

reduction[11]. Along with the 3D vision in sight, the 

manufacturing lines will produce much better products 

both quality and quantity wise. The vision not only 
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will replace the manual labors and potential voids in 

between the times, but also will accelerate to cut 

down the manufacturing hour and apparatus downtime 

to result fast turnovers of the whole cycle.

For improved efficiency, the 3D vision has been 

studied of its proper lighting exposure value. Through 

the adjustments, the research was able to draw the 

optimal lighting standardization throughout day and 

night, facilitating the vision camera to shoot and read 

clear images of the target parts. Therefore, the overall 

productivity has increased and operating hour has 

been prolonged. Before the development, production 

output has marked 275 units per day. After the 

implementation, the number has climbed to 320 units 

per day. Defective rate has dropped from 0.3% to 

0.1% based on two weeks of manufacturing trial. The 

machine downtime has dropped from 57.6 hours to 

17 hours with which effecting the operational rate 

rising from 80% to 94%.

Along with the major 3D vision development, 

supplementary features of robot hand grippers, 

rollover machine, and gripping correction jigs also 

have helped to increase the productivity. Especially 

the robot gripping technology is a bolstering 

functionality to replace manual clamping operation. 

From 100 seconds per item to load, the robot hand 

gripping time has been plummeted to 33.2 seconds 

when the robot loading test time has been averaged 

after 10 trials.

Juxtaposition of utilizing real time data from 3D 

vision to load the materials for the input with fully 

functional automation lines is the key. Accompanying 

with the intricate internal sensors adopted to the 

vision camera and robots will maximize the output, 

accurate utilization of the cycle would allow the 

company be in control of the facility management. 

The field workers and engineers are also free from 

the apprehensions of the manual material loadings to 

the machines and environmental loss time only 

because of their occasional absences on the site when 

the materials are all run out of the conveyors. Taking 

the circumstances into consideration, The 3D vision 

certainly is an effective and attractive capacity to 

generate better outcomes of the automation lines 

associated to smart factory.
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