DOI QR코드

DOI QR Code

감귤 과피 분말 기반 마찰전기 나노발전기 제작

Triboelectric Nanogenerator based on Mandarin Peel Powder

  • 김우중 (한국생산기술연구원 청정웰빙연구그룹) ;
  • 김수완 (한국생산기술연구원 청정웰빙연구그룹) ;
  • 박성현 (한국생산기술연구원 청정웰빙연구그룹) ;
  • 도양회 (제주대학교 전자공학과) ;
  • 양영진 (한국생산기술연구원 청정웰빙연구그룹)
  • Kim, Woo Joong (Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology) ;
  • Kim, Soo Wan (Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology) ;
  • Park, Sung Hyun (Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology) ;
  • Doh, Yang Hoi (Department of Electronic Engineering, Jeju National University) ;
  • Yang, Young Jin (Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology)
  • 투고 : 2022.02.10
  • 심사 : 2022.03.18
  • 발행 : 2022.05.31

초록

Discarded bio-wastes, such as seeds and rinds, cause environmental problems. Multiple studies have recycled bio-wastes as eco-friendly energy sources to solve these problems. This study uses bio-waste to fabricate a mandarin peel powder based triboelectric nanogenerator (MPP-TENG). The MPP-TENG is based on the contact separation mode. It generates an open-circuit voltage and short-circuit current of 156V and 2µA, respectively. In addition, MPP-TENG shows stable operation over continuous 3000s without any deviation in output. Also, the device exhibits maximum power density of 5.3㎼/cm2 when connected to a resistance of 100MΩ. In an energy storage capacity test for 1000s, the MPP-TENG stores an energy of 171.6µJ in a 4.7µF capacitor. The MPP-TENG can power 9 blue LEDs and 54 green lettering LEDs. These results confirm that the MPP-TENG can provide a new avenue for eco-friendly energy harvesting device fabrication.

키워드

과제정보

본 논문은 한국생산기술연구원 기관주요사업 "2022년 청정 생산 공정기술 기반 스마트 웰니스케어 핵심기술 개발사업(4/5) (kitech EH-22-0001)"의 지원으로 수행한 연구입니다.

참고문헌

  1. Saqib, Q. M., Shaukat, R. A., Khan, M. U., Chougale, M. and Bae, J. H., "Biowaste Peanut Shell Powder-Based Triboelectric Nanogenerator for Biomechanical Energy Scavenging and Sustainably Powering Electronic Supplies", ACS Applied Electronic Materials, Vol. 2, No. 12, pp. 3953-3963, 2020. https://doi.org/10.1021/acsaelm.0c00791
  2. Liu, Y., He, K., Chen, G., Leow, W. R. and Chen, X. D., "Nature-Inspired Structural Materials for Flexible Electronic Devices", Chemical Reviews, Vol. 117, No. 20, pp. 12893-12941, 2017. https://doi.org/10.1021/acs.chemrev.7b00291
  3. Fan, F. R., Tian, Z. Q. and Wang, Z. L., "Flexible Triboelectric Generator", Nano Energy, Vol. 1, No. 2, pp. 328-334, 2012. https://doi.org/10.1016/j.nanoen.2012.01.004
  4. Wang, Z. L. and Wu, W. Z., "Nanotechnology-Enabled Energy Harvesting for Self Powered Micro-/Nanosystems", Amgewandte Chemie, Vol. 51, No. 47, pp. 11700-11721, 2012. https://doi.org/10.1002/anie.201201656
  5. Tian, J. W., Chen, X. Y. and Wang, Z. L., "Environmental Energy Harvesting based on Triboelectric Nanogenerators", Nanotechnology, Vol. 31, No. 24, pp. 242001, 2020. https://doi.org/10.1088/1361-6528/ab793e
  6. Mao, Y. C., Zhang, N., Tang, Y. J., Wang, M., Chao, M. J. and Liang, E. J., "A Paper Triboelectric Nanogenerator for Self-powered Electronic Systems", Nanoscale, Vol. 9, No. 38, pp. 14499-14505, 2017. https://doi.org/10.1039/C7NR05222G
  7. Cao, X., Jie, Y., Wang, N. and Wang, Z. L., "Triboelectric Nanogenerators Driven Self- Powered Electrochemical Processes for Energy and Environmental Science", Advanced Energy Materials, Vol. 6, No. 23, pp. 1600665, 2016. https://doi.org/10.1002/aenm.201600665
  8. Kim, W. G., Kim, D. W., Tcho, I. W., Kim, J. K., Kim, M. S. and Choi, Y. K., "Triboelectric Nanogenerator: Structure, Mechanism, and Applications", ACS Nano, Vol. 15, No. 1, pp. 258-287, 2021. https://doi.org/10.1021/acsnano.0c09803
  9. Zhang, R. and Olin, H., "Material Choices for Triboelectric Nanogenerators: A Critical Review", EcoMat, Vol. 2, No. 3, pp. 12062, 2020.
  10. Zhou, Z. H., Li, X. S., Wu, Y. F., Zhang, H., Lin, Z. W., Meng, K. Y., Lin, Z. M., He, Q., Sun, C. C., Yang, J. and Wang, Z. L., "Wireless Self-Powered Sensor Networks Driven by Triboelectric Nanogenerator for In-situ Real Time Survey of Environmental Monitoring", Nano Energy, Vol. 53, pp. 501-507, 2018. https://doi.org/10.1016/j.nanoen.2018.08.055
  11. Luo, J. J., Wang, Z. M., Xu, L., Wang, A. C., Han, K., Jiang, T., Lai, Q. S., Bai, Y., Tang, W., Fan, F. R. and Wang, Z. L., "Flexible and Durable Wood-based Triboelectric Nanogenerators for Self-Powered Sensing in Athletic Big Data Analytics", Nature Communications, Vol. 10, No. 5147, 2019.
  12. Zhang, Y. J., Zhou, Z. T., Sun, L., Liu, Z., Xia, X. X. and Tao, T. H., ""Genetically Engineered" Biofunctional Triboelectric Nanogenerators using Recombinant Spider Silk", Advanced Materials, Vol. 30, No. 50, pp. 1805722, 2018. https://doi.org/10.1002/adma.201805722
  13. Shaukat, R. A., Saqib, Q. M., Khan, M. U., Chougale, M. Y. and Bae, J. H., "Bio-waste Sunflower Husks Powder based Recycled Triboelectric Nanogenerator for Energy Harvesting", Energy Reports, Vol. 7, pp. 724-731, 2021. https://doi.org/10.1016/j.egyr.2021.01.036
  14. Gaur, A., Tiwari, S., Kumar, C. and Maiti, P., "Bio-waste Orange Peel and Polymer Hybrid for Efficient Energy Harvesting", Energy Reports, Vol. 6, pp. 490-496, 2020.
  15. Zhang, R. Y., Dahlstrom, C., Zou, H. Y., Jonzon, J., Hummelgard, M., Ortegren, J., Blomquist, N., Yang, Y., Andersson, H., Martin, O., Norgren, M. Olin, H. and Wang, Z. L., "Cellulose-Based Fully Green Triboelectric Nanogenerators with Output Power Density of 300Wm-2", Advanced Materials, Vol. 32, No. 38, pp. 2002824, 2020. https://doi.org/10.1002/adma.202002824
  16. Lei, H., Xiao, J., Chen, Y. F., Jiang, J. W., Xu, R. J., Wen, Z., Dong, B. and Sun, X., "Bamboo-Inspired Self-Powered Triboelectric Sensor for Touch Sensing and Sitting Posture Monitoring", Nano Energy, Vol. 91, pp. 106670, 2022. https://doi.org/10.1016/j.nanoen.2021.106670
  17. Rivas, B., Toizrado, A., Torre, P., Converti, A. and Dominguez, J. M., "Submerged Citric Acid Fermentation on Orange Peel Autohydrolysate", Journal of Agricultural and Food Chemistry, Vol. 56, No. 7, pp. 2380-2387, 2008. https://doi.org/10.1021/jf073388r
  18. Vivekananthan, V., Chandrasekhar, A., Alluri, N. R., Purusothaman, Y., Khandelwal, G. and Kim, S. J., Triboelectric Nanogenerator: Design, Fabrication, Energy Harvesting, and Portable-Wearable Applications, Intechopen, pp. 1-3, 2020.