DOI QR코드

DOI QR Code

Effect of Annealing Temperature on the Structural and Optical Properties of ZrO2 Thin Films

  • Received : 2022.02.02
  • Accepted : 2022.05.20
  • Published : 2022.05.27

Abstract

Transparent thin films of pure and nickel-doped ZrO2 are grown successfully by sol-gel dip-coating technique. The structural and optical properties according to the different annealing temperatures (300 ℃, 400 ℃ and 500 ℃) are investigated. Analysis of crystallographic properties through X-ray diffraction pattern reveals an increase in crystallite size due to increase in crystallinity with temperature. All fabricated thin films are highly-oriented along (101) planes, which enhances the increase in nickel doping. Scanning electron microscopy and energy dispersive spectroscopy are employed to confirm the homogeneity in surface morphology as well as the doping configuration of films. The extinction coefficient is found to be on the order of 10-2, showing the surface smoothness of deposited thin films. UV-visible spectroscopy reveals a decrease in the optical band gap with the increase in annealing temperature due to the increase in crystallite size. The variation in Urbach energy and defect density with doping and the change in annealing temperature are also studied.

Keywords

References

  1. A. Hojabri, J.Theor. Appl. Phys, 10, 219 (2016). https://doi.org/10.1007/s40094-016-0218-8
  2. S. Venkataraj, O. Kappertz, H. Weis, R. Drese, R. Jayavel and M. Wuttig, J. Appl. Phys., 92, 3599 (2002). https://doi.org/10.1063/1.1503858
  3. A. Mendez-Lopez, O. Zelaya-Angel, M. Toledano-Ayala, I. Torres-Pacheco, J. Perez-Robles and Y. Acosta-Silva, Crystals, 10, 454 (2020). https://doi.org/10.3390/cryst10060454
  4. M. H. Boratto, M. Congiu, S. B. dos Santos and L. V. Scalvi, Ceram. Int., 44, 10790 (2018). https://doi.org/10.1016/j.ceramint.2018.03.117
  5. K. Khojier, H. Savaloni and F. Jafari, J. Theor. Appl. Phys, 7, 1 (2013). https://doi.org/10.1186/2251-7235-7-1
  6. C.-Y. Lin, C.-Y. Wu, C.-Y. Wu, C.-C. Lin and T.-Y. Tseng, Thin Solid Films, 516, 444 (2007). https://doi.org/10.1016/j.tsf.2007.07.140
  7. D. Panda and T.-Y. Tseng, Thin Solid Films, 531, 1 (2013). https://doi.org/10.1016/j.tsf.2013.01.004
  8. F. Rebib, N. Laidani, G. Gottardi, V. Micheli, R. Bartali, Y. Jestin, E. Tomasella, M. Ferrari and L. Thomas, EPJ Appl. Phys., 43, 363 (2008). https://doi.org/10.1051/epjap:2008129
  9. W. Li, X. Liu, A. Huang and P. K. Chu, J. Phys. D: Appl. Phys., 40, 2293 (2007). https://doi.org/10.1088/0022-3727/40/8/S08
  10. D. Kumar, A. Singh, B. Saini, B. Choudhary, V. Shinde and R. Kaur, J. Electron. Mater., 50, 65 (2021). https://doi.org/10.1007/s11664-020-08558-0
  11. D. Kumar, A. Singh, N. Kaur, A. Thakur and R. Kaur, SN Appl. Sci., 2, 1 (2020). https://doi.org/10.1007/s42452-019-1685-8
  12. J. Chevalier, L. Gremillard, A. V. Virkar and D. R. Clarke, J. Am. Ceram. Soc., 92, 1901 (2009). https://doi.org/10.1111/j.1551-2916.2009.03278.x
  13. B. Sathyaseelan, E. Manikandan, I. Baskaran, K. Senthilnathan, K. Sivakumar, M. Moodley, R. Ladchumananandasivam and M. Maaza, J. Alloys Compd., 694, 556 (2017). https://doi.org/10.1016/j.jallcom.2016.10.002
  14. S. Das, C.-C. Chang, C.-Y. Yang, S. Som and C.-H. Lu, Mater. Charact., 106, 20 (2015). https://doi.org/10.1016/j.matchar.2015.05.004
  15. N. Selvi, S. Sankar and K. Dinakaran, J. Mater. Sci.: Mater. Electron., 25, 5078 (2014). https://doi.org/10.1007/s10854-014-2274-7
  16. R. Gomez, T. Lopez, X. Bokhimi and O. Novaro, J. SolGel Sci. Technol., 11, 309 (1998). https://doi.org/10.1023/A:1008666531404
  17. Y.-Y. Lyu, S. H. Yi, J. K. Shon, S. Chang, L. S. Pu, S.- Y. Lee, J. E. Yie, K. Char, G. D. Stucky and J. M. Kim, J. Am. Chem. Soc., 126, 2310 (2004). https://doi.org/10.1021/ja0390348
  18. E. Bonera, G. Scarel and M. Fanciulli, J. Non-Cryst. Solids, 322, 105 (2003). https://doi.org/10.1016/S0022-3093(03)00188-1
  19. X. Wang, W. Tian, M. Liao, Y. Bando and D. Golberg, Chem. Soc. Rev., 43, 1400 (2014). https://doi.org/10.1039/C3CS60348B
  20. D. Kumar, A. Singh, M. Kaur, V. S. Rana and R. Kaur, AIP Conf. Proc., 1953, 030074 (2018).
  21. D. Kumar, A. Singh, M. Kaur, V. S. Rana and R. Kaur, AIP Conf. Proc., 1953, 030246 (2018).
  22. Z. Pavloviae, D. Risoviae and D. Novakoviae, Surf. Interface Anal., 44, 825 (2012). https://doi.org/10.1002/sia.4889
  23. Gwyddion software retrieved on July 15, 2020 from http://gwyddion.net/download.php
  24. N. Mathews, E. R. Morales, M. Cortes-Jacome and J. T. Antonio, Sol. Energy, 83, 1499 (2009). https://doi.org/10.1016/j.solener.2009.04.008
  25. V. Gupta and A. Mansingh, J. Appl. Phys., 80, 1063 (1996). https://doi.org/10.1063/1.362842
  26. R. Karmakar, S. Neogi, A. Banerjee and S. Bandyopadhyay, Appl. Surf. Sci., 263, 671 (2012). https://doi.org/10.1016/j.apsusc.2012.09.133
  27. P. Scherrer, Nachrichten der Gottinger Gesellschaft, 98, 394 (1918).
  28. M. S. Kim, K. G. Yim, J.-Y. Leem, S. Kim, G. Nam, D.- Y. Lee, J. S. Kim and J. S. Kim, J. Korean Phys. Soc., 59, 2343 (2011). https://doi.org/10.3938/jkps.59.2343
  29. C. S. Barrett and T. B. Massalski, Structure of metals. Crystallographic Methods, Principles and Data, 3rd ed. p. 256-59, Pergamon Press, New York (1980).
  30. G. Harris, Lond. Edinb. Dublin Philos. Mag. J. Sci., 43, 113 (1952). https://doi.org/10.1080/14786440108520972
  31. G. Singh, S. Shrivastava, D. Jain, S. Pandya, T. Shripathi and V. Ganesan, Bull. Mater. Sci., 33, 581 (2010). https://doi.org/10.1007/s12034-010-0089-6
  32. M. H. Habibi, N. Talebian and J.-H. Choi, Dyes Pigm., 73, 103 (2007). https://doi.org/10.1016/j.dyepig.2005.10.016
  33. J. Tauc, R. Grigorovici and A. Vancu, Phys. Status Solidi, 15, 627 (1966). https://doi.org/10.1002/pssb.19660150224
  34. D. Kumar, A. Singh, B. Saini, B. Choudhary, V. Shinde and R. Kaur, J. Electron. Mater., 50, 65 (2021). https://doi.org/10.1007/s11664-020-08558-0
  35. S. I. Novikova-Moscow, Izdatel'stvo Nauka, 1974, 291 (1974).
  36. R. P. Haggerty, P. Sarin, Z. D. Apostolov, P. E. Driemeyer and W. M. Kriven, J. Am. Ceram. Soc., 97, 2213 (2014). https://doi.org/10.1111/jace.12975
  37. V. Anitha, S. S. Lekshmy and K. Joy, J. Alloys Compd., 675, 331 (2016). https://doi.org/10.1016/j.jallcom.2016.03.045
  38. G. Zhang, K. Lu, X. Zhang, W. Yuan, M. Shi, H. Ning, R. Tao, X. Liu, R. Yao and J. Peng, Micromachines, 9, 377 (2018). https://doi.org/10.3390/mi9080377
  39. C. Rotaru, S. Nastase and N. Tomozeiu, Phys. Status Solidi, 171, 365 (1999). https://doi.org/10.1002/(sici)1521-396x(199901)171:1@@<@@365::aid-pssa365@@>@@3.0.co;2-m
  40. M. Moustafa and M. Hassaan, J. Alloys Compd., 710, 312 (2017). https://doi.org/10.1016/j.jallcom.2017.03.192
  41. N. Tigau, S. Condurache-Bota, R. Drasovean, J. Cringanu and R. Gavrila, Rom. J. Phys., 62, 604 (2017).
  42. F. Urbach, Phys. Rev., 92, 1324 (1953). https://doi.org/10.1103/PhysRev.92.1324
  43. M. Bashar, R. Matin, M. Sultana, A. Siddika, M. Rahaman, M. Gafur and F. Ahmed, J. Theor. Appl. Phys., 14, 53(2020). https://doi.org/10.1007/s40094-019-00361-5
  44. M. H. Kabir, M. M. Ali, M. A. Kaiyum and M. Rahman, J. Phys. Commun., 3, 105007 (2019). https://doi.org/10.1088/2399-6528/ab496f