DOI QR코드

DOI QR Code

Influence of Inhibitors on the Corrosion of Al and Al-composites in Chloride-containing Solutions - A Review

  • Kumar, Neeraj (Department of Metallurgical and Materials Engineering, NIT Raipur) ;
  • Srivastava, Ashok K. (Department of Metallurgical Engineering, SOE, O.P. Jindal University) ;
  • Gautam, Prabhat (Department of Chemistry, CMR Institute of Technology) ;
  • Manoj, M.K. (Department of Metallurgical and Materials Engineering, NIT Raipur)
  • Received : 2022.02.08
  • Accepted : 2022.05.06
  • Published : 2022.05.27

Abstract

Corrosion is a natural, inevitable process, and is one of the world's most serious problems. Losses incurred due to corrosion are extremely expensive for society. Several technological strategies have been explored and implemented to address these losses. The use of inhibitors to prevent corrosion is a common and efficient method to reduce corrosion losses. This review covers Al and Al-composite corrosion inhibitors in chloride-containing solutions, because of their popularity in a broad array of industrial applications. A vast number of studies in the literature detail the common tendency of Al and Al-composites with reinforcements to deteriorate. Accordingly, it is worthwhile to employ inhibitors to protect them, as discussed in the present work. The emphasis is on selecting the smartest corrosion inhibitor and evaluating its performance. According to the study, the most commonly used corrosion inhibitors are 1,4-naphthoquinone (NQ), 1,5-naphthalene diol, 3-amino-1,2,4-triazole-5-thiol (ATAT), ammonium tetrathiotungstate, clotrimazole, amoxicillin, antimicrobial and antifungal drugs. Electrochemical impedance spectroscopy (EIS), potentiodynamic (PDP), and weight loss were among the most commonly used modern electrochemical technologies to test inhibitors' efficacy under environmental conditions.

Keywords

References

  1. A. R. Prasad, A. Kunyankandy and A. Joseph, Corrosion Inhibition in Oil and Gas Industry, p.135, Wiley, New York (2020).
  2. A. M, El-Sherik, Trends in Oil and Gas Corrosion Research and Technologies, p. 3, Woodhead Publishing (2017).
  3. R. Arrabal, B. Mingo, A. Pardo, M. Mohedano, E. Matykina and I. Rodriguez, Corros. Sci., 73, 342 (2013). https://doi.org/10.1016/j.corsci.2013.04.023
  4. P. K. Gupta and R. Srivastava, Mater. Today: Proc., 5, 18761 (2018). https://doi.org/10.1016/j.matpr.2018.06.223
  5. N. Kumar, A. Gautam, R. S. Singh and M. K. Manoj, Trans. Indian Inst. Met., 72, 2495 (2019). https://doi.org/10.1007/s12666-019-01717-w
  6. N. Kumar, and M. Manoj, Met. Mater. Int., 27, 4120 (2021). https://doi.org/10.1007/s12540-020-00814-6
  7. C. Chen and F. Mansfeld, Corros. Sci., 39, 1075 (1997). https://doi.org/10.1016/S0010-938X(97)00008-5
  8. S. Lin, H. Greene, H. Shih and F. Mansfeld, Corrosion, 48, 61 (1992). https://doi.org/10.5006/1.3315920
  9. F. Mansfeld, S. Lin, S. Kim and H. Shih, Corrosion, 45, 615 (1989). https://doi.org/10.5006/1.3579314
  10. S. Cui, J. Han, Y. Du and W. Li, Surf. Coat. Technol., 201, 5306 (2007). https://doi.org/10.1016/j.surfcoat.2006.07.126
  11. A. Sharma and B. Ahn, Appl. Surf. Sci., 550, 149335 (2021). https://doi.org/10.1016/j.apsusc.2021.149335
  12. A. Sharma and B. Ahn, Korean J. Mater. Res., 28, 691 (2018). https://doi.org/10.3740/MRSK.2018.28.12.691
  13. A. Gautam, P. Komal, P. Gautam, A. Sharma, N. Kumar and J. P. Jung, Metals, 11, 329 (2021). https://doi.org/10.3390/met11020329
  14. N. Kumar, P. Chamoli, M. Misra, M. K. Manoj and A. Sharma, Nanoscale, 14, 3987 (2022). https://doi.org/10.1039/D1NR07643D
  15. S. B. Lyon, Corrosion of Noble Metals, p.2205-2223, Elsevier, University of Manchester, UK (2010).
  16. M. Osman, Mater. Chem. Phys., 71, 12 (2001). https://doi.org/10.1016/S0254-0584(00)00510-1
  17. M. Gobara, A. Baraka, R. Akid and M. Zorainy, RSC Adv., 10, 2227 (2020). https://doi.org/10.1039/c9ra09552g
  18. O. Fayomi and I. Akande, J. Bio- Tribo-Corros., 5, 1 (2019). https://doi.org/10.1007/s40735-018-0196-2
  19. A. Yurt, G. Bereket and C. Ogretir, J. Mol. Struct., 725, 215 (2005). https://doi.org/10.1016/j.theochem.2005.01.048
  20. R. Solmaz, G. Kardas, B. Yazici and M. Erbil, Corros. Eng., Sci. Technol., 2, 186 (2008).
  21. N. A. Negm, M. A. Yousef and S. M. Tawfik, Recent Pat. Corros. Sci., 3, 58 (2013). https://doi.org/10.2174/2210683911303010007
  22. M. Becker, Corros. Rev., 37, 321 (2019). https://doi.org/10.1515/corrrev-2019-0032
  23. V. S. Saji, Recent Pat. Corros. Sci., 2, 63 (2011). https://doi.org/10.2174/2210683911101010063
  24. R. W. Revie and Herbert H. Uhlig, Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering, 4th ed., p.43-51, John Wiley & Sons (2008).
  25. L. Hihara and R. Latanision, Corrosion, 48, 48 (1992).
  26. T. M. Yue, Y. Wu and H. C. Man, J. Mater. Sci. Lett., 19, 1003 (2000). https://doi.org/10.1023/A:1006745028307
  27. N. Kumar, M. K. Manoj and M. K. Phani, Mater. Sci. Res. India, 15, 91 (2018). https://doi.org/10.13005/msri/150111
  28. N. Kumar, M. K. Manoj and R. Haldar, J. Mater. Sci. Nanotechnol., 4, 202 (2016).
  29. N. Kumar, D. Dwivedi, A. Sharma, B. Ahn and M. K. Manoj, J. Mater. Res. Express, 6, 126554 (2019). https://doi.org/10.1088/2053-1591/ab5458
  30. K. Xhanari and M. Finsgar, Arab. J. Chem., 8, 12 (2019).
  31. R. W. Revie, Uhlig's Corrosion Handbook, p.51, John Wiley & Sons, New Jersey, United States (2011).
  32. F. Mansfeld, ASM handbook, p.446-462, Stephen D. Cramer, ASM handbook, Ohio, USA (2003).
  33. D. Ho, N. Brack, J. Scully, T. Markley, M. Forsyth and B. Hinton, J. Electrochem. Soc., 9, 53 (2006).
  34. I. Recloux, F. Andreatta, M. E. Druart, L.-B. Coelho, C. Cepek, D. Cossement, L. Fedrizzi and M.-G. Olivier, J. Alloys Compd., 735, 2512 (2018). https://doi.org/10.1016/j.jallcom.2017.11.346
  35. W. W. Nik, O. Sulaiman, S. E. Giap and R. Rosliza, Int. J. Technol., 1, 20 (2010).
  36. I. Obot, N. Obi-Egbedi and S. Umoren, Corros. Sci., 51, 1868 (2009). https://doi.org/10.1016/j.corsci.2009.05.017
  37. E.-S. M. Sherif, J. A. Mohammed, H. S. Abdo and A. A. Almajid, Int. J. Electrochem. Sci., 11, 1355 (2016).
  38. M. Misra, S. R. Chowdhury and T. I. Lee, Appl. Catal., B, 272, 118991 (2020). https://doi.org/10.1016/j.apcatb.2020.118991
  39. M. Misra, S. R. Chowdhury, N. Singh and M. K. Nayak, Electrochim. Acta, 341, 135943 (2020). https://doi.org/10.1016/j.electacta.2020.135943
  40. E.-S. M. Sherif and S.-M. Park, J. Electrochem. Soc., 152, B205 (2005). https://doi.org/10.1149/1.1914752
  41. E.-S. M. Sherif, Int. J. Electrochem. Sci., 7, 4847 (2012).
  42. M. Abdallah, O. A. Hazazi, A. Fawzy, S. El-Shafei and A. S. Fouda, Prot. Met. Phys. Chem. Surf., 50, 659 (2014). https://doi.org/10.1134/S2070205114050025
  43. H. M. Zakaria, Ain Shams Eng. J., 5, 831 (2014). https://doi.org/10.1016/j.asej.2014.03.003
  44. P. C. R. Nunes and L. Ramanathan, Corrosion, 51, 610 (1995). https://doi.org/10.5006/1.3293621
  45. A. S. Verma and N. M. Suri, Mater. Today: Proc., 2, 2840 (2015). https://doi.org/10.1016/j.matpr.2015.07.299
  46. N. K. Verma, Mater. Sci. Res. India, 11, 146 (2014). https://doi.org/10.13005/msri/110207
  47. A. Sharma, H. Lee and B. Ahn, Powder Metall., 64, 192 (2021). https://doi.org/10.1080/00325899.2021.1899453
  48. A. Sharma and S. Das, Mater. Des., 30, 3900 (2009). https://doi.org/10.1016/j.matdes.2009.03.022
  49. B. R. W. Hinton, J. Alloys Compd., 180, 15 (1992). https://doi.org/10.1016/0925-8388(92)90359-H
  50. A. K. Mishra and R. Balasubramaniam, Corros. Sci., 49, 1027 (2007). https://doi.org/10.1016/j.corsci.2006.06.026
  51. I. Aziz, Z. Qi and X. Min, Chin. J. Aeronaut., 22, 670 (2009). https://doi.org/10.1016/S1000-9361(08)60157-0
  52. S. C. Tjong and H. Huo, J. Mater. Eng. Perform., 18, 88 (2009). https://doi.org/10.1007/s11665-008-9264-y
  53. D. Arnott, B. Hinton and N. Ryan, Corrosion, 45, 12 (1989). https://doi.org/10.5006/1.3577880
  54. L. Wilson and B. R. W. Hinton, International Patent, PTC South Melbourne, p. 54-57 (1988).
  55. Y. Zamri, J. Shamsul and K. Ahmad, Proceedings of the National Metallurgical Conference, p.128, Kangar, Perlis, Malaysia (2006).
  56. W. Xue, X. Wu, X. Li and H. Tian, J. Alloys Compd., 425, 302 (2006). https://doi.org/10.1016/j.jallcom.2006.01.035
  57. J. Y. Oh, J.-M. Yu, S. R. Chowdhury, T. I. Lee and M. Misra, Electrochim. Acta, 298, 694 (2019). https://doi.org/10.1016/j.electacta.2018.12.088
  58. C. Monticelli, F. Zucchi, G. Brunoro and G. Trabanelli, J. Appl. Electrochem., 27, 325 (1997). https://doi.org/10.1023/A:1018436931465
  59. A. Fouda, A. Al-Sarawy, F. S. Ahmed and H. El-Abbasy, Prot. Met. Phys. Chem. Surf., 45, 635 (2009). https://doi.org/10.1134/S2070205109050244
  60. M. Abdallah and B. A. A. Jahdaly, Int. J. Electrochem. Sci., 10, 9808 (2015).
  61. N. Raghavendra and J. I. Bhat, J. Phys. Sci., 29, 77 (2018). https://doi.org/10.21315/jps2018.29.1.6
  62. I. Obot, N. Obi-Egbedi and S. Umoren, Int. J. Electrochem. Sci, 4, 863 (2009).
  63. S. Tamborim, S. Dias, S. Silva, L. Dick and D. Azambuja, Corros. Sci., 53, 1571 (2011). https://doi.org/10.1016/j.corsci.2011.01.034
  64. S. Leekha, C. L. Terrell and R. S. Edson, Mayo Clin. Proc., 86, 156 (2011). https://doi.org/10.4065/mcp.2010.0639
  65. K. Brown, Pharmaceutical Historian, 34, 37 (2004).
  66. M. Abdallah, Corros. Sci., 46, 1981 (2004). https://doi.org/10.1016/j.corsci.2003.09.031
  67. K. A. Caprile, J. Vet. Pharmacol. Therapeut, 11, 1 (1988). https://doi.org/10.1111/j.1365-2885.1988.tb00117.x
  68. H. Al-Jahdali, A. Alshimemeri, A. Mobeireek, A. S. Albanna, N. N. Al Shirawi, S. Wali, K. Alkattan, A. A. Alrajhi, K. Mobaireek and H. S. Alorainy, Ann. Thorac. Med., 12, 135 (2017). https://doi.org/10.4103/atm.ATM_171_17
  69. N. Vaszilcsin, V. Ordodi and A. Borza, Int. J. Pharm., 431, 241 (2012). https://doi.org/10.1016/j.ijpharm.2012.04.015
  70. J. F. Borgio, A. S. Rasdan, B. Sonbol, G. Alhamid, N. B. Almandil and S. AbdulAzeez, Biology, 10, 1144 (2021). https://doi.org/10.3390/biology10111144