DOI QR코드

DOI QR Code

Triboelectrification based Multifunctional Tactile Sensors

  • Park, Hyosik (Department of Energy Science and Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Kim, Jeongeun (Department of Energy Science and Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Lee, Ju-Hyuck (Department of Energy Science and Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST))
  • Received : 2022.04.29
  • Accepted : 2022.05.27
  • Published : 2022.05.31

Abstract

Advanced tactile sensors are receiving significant attention in various industries such as extended reality, electronic skin, organic user interfaces, and robotics. The capabilities of advanced tactile sensors require a variety of functions, including position sensing, pressure sensing, and material recognition. Moreover, they should comsume less power and be bio-friendly with human contact. Recently, a tactile sensor based on the triboelectrification effect was developed. Triboelectric tactile sensors have the advantages of wide material availability, simple structure, and low manufacturing cost. Because they generate electricity by contact, they have low power consumption compared to conventional tactile sensors such as capacitive and piezoresistive. Furthermore, they have the ability to recognize the contact material as well as execute position and pressure sensing functions using the triboelectrification effect. The aim of this study is to introduce the progress of research on triboelectrification-based tactile sensors with various functions such as position sensing, pressure sensing and contact material recognition.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea 2020R1C1C1007436.

References

  1. D. P. Cotton, I. M. Graz, and S. P. Lacour, "A multifunctional capacitive sensor for stretchable electronic skins", IEEE Sens. J., Vol. 9, No. 12, pp. 2008-2009, 2009. https://doi.org/10.1109/JSEN.2009.2030709
  2. D. S. Kang, M. J. Kim, and W. K. Moon, "Optimization of a capacitive sensor for high dynamic range", J. Sens. Sci. Technol., Vol. 19, No. 2, pp. 92-98, 2010. https://doi.org/10.5369/JSST.2010.19.2.092
  3. W. Kim, H. Lee, K.-N. Lee, and K. Kim, "A Polymer-based Capacitive Air Flow Sensor with a Readout IC and a Temperature Sensor", J. Sens. Sci. Technol., Vol. 28, No. 1, pp. 1-6, 2019. https://doi.org/10.5369/JSST.2019.28.1.1
  4. S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K. I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, and R. Wang, "Soft microfluidic assemblies of sensors, circuits, and radios for the skin", Sci., Vol. 344, No. 6179, pp. 70-74, 2014. https://doi.org/10.1126/science.1250169
  5. N. Li, Z. Yin, W. Zhang, C. Xing, T. Peng, B. Meng, J. Yang, and Z. Peng, "A triboelectric-inductive hybrid tactile sensor for highly accurate object recognition", Nano Energy., Vol. 96, p. 107063, 2022. https://doi.org/10.1016/j.nanoen.2022.107063
  6. D. Kwon, T. I. Lee, J. Shim, S. Ryu, M. S. Kim, S. Kim, T.-S. Kim, and I. Park, "Highly sensitive, flexible, and wearable pressure sensor based on a giant piezocapacitive effect of three-dimensional microporous elastomeric dielectric layer", ACS Appl. Mater. Interfaces, Vol. 8, No. 26, pp. 16922-16931, 2016. https://doi.org/10.1021/acsami.6b04225
  7. F. Reverter, J. Jordana, M. Gasulla, and R. Pallas-Areny, "Accuracy and resolution of direct resistive sensor-to-microcontroller interfaces", Sens. Actuators A Phy., Vol. 121, No. 1, pp. 78-87, 2005. https://doi.org/10.1016/j.sna.2005.01.010
  8. T. Sandner, H. Conrad, T. Klose, and H. Schenk, "Integrated piezo-resistive positionssensor for microscanning mirrors", in 2007 IEEE/LEOS Int. Conf. Opt. MEMS Nanophotonics, 2007: IEEE, pp. 195-196, 2007.
  9. W. J. Kim, Y. S. Cho, H. J. Kang, and S. Y. Choi, "Development of miniature weight sensor using piezoresistive pressure sensor", J. Sens. Sci. Technol., Vol. 14, No. 4, pp. 237-243, 2005. https://doi.org/10.5369/JSST.2005.14.4.237
  10. H. J. Bae, S. H. Son, and S. Y. Choi, "Fabrication of silicon piezoresistive pressure sensor for a biomedical in-vivo measurements", J. Sens. Sci. Technol., Vol. 10, No. 3, pp. 148-155, 2001.
  11. X. Wang, Y. Zhang, X. Zhang, Z. Huo, X. Li, M. Que, Z. Peng, H. Wang, and C. Pan, "A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics", Adv. Mater., Vol. 30, No. 12, p. 1706738, 2018. https://doi.org/10.1002/adma.201706738
  12. C. M. Boutry, M. Negre, M. Jorda, O. Vardoulis, A. Chortos, O. Khatib, and Z. Bao, "A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics", Sci. Robot., Vol. 3, No. 24, p. eaau6914, 2018. https://doi.org/10.1126/scirobotics.aau6914
  13. J. Wang, P. Cui, J. Zhang, Y. Ge, X. Liu, N. Xuan, G. Gu, G. Cheng, and Z. Du, "A stretchable self-powered triboelectric tactile sensor with EGaIn alloy electrode for ultra-low-pressure detection", Nano Energy., Vol. 89, p. 106320, 2021. https://doi.org/10.1016/j.nanoen.2021.106320
  14. Z. L. Wang, L. Lin, J. Chen, S. Niu, and Y. Zi, "Triboelectric nanogenerator: Vertical contact-separation mode", in Triboelectric Nanogenerators: Springer, pp. 23-47, 2016.
  15. H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, H. Zheng, C. Chen, A. C. Wang, and C. Xu, "Quantifying the triboelectric series", Nat. Commun., Vol. 10, No. 1, pp. 1-9, 2019. https://doi.org/10.1038/s41467-018-07882-8
  16. H. J. Ryoo, C. W. Lee, J. W. Han, W. Kim, and D. Choi, "A Triboelectric Nanogenerator Design for the Utilization of Multi-Axial Mechanical Energies in Human Motions", J. Sens. Sci. Technol., Vol. 29, No. 5, pp. 312-322, 2020. https://doi.org/10.46670/JSST.2020.29.5.312
  17. X. Pu, Q. Tang, W. Chen, Z. Huang, G. Liu, Q. Zeng, J. Chen, H. Guo, L. Xin, and C. Hu, "Flexible triboelectric 3D touch pad with unit subdivision structure for effective XY positioning and pressure sensing", Nano Energy., Vol. 76, p. 105047, 2020. https://doi.org/10.1016/j.nanoen.2020.105047
  18. Q. Shi, Z. Zhang, T. Chen, and C. Lee, "Minimalist and multi-functional human machine interface (HMI) using a flexible wearable triboelectric patch", Nano Energy., Vol. 62, pp. 355-366, 2019. https://doi.org/10.1016/j.nanoen.2019.05.033
  19. C. Ning, K. Dong, R. Cheng, J. Yi, C. Ye, X. Peng, F. Sheng, Y. Jiang, and Z. L. Wang, "Flexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and human-interactive sensing", Adv. Funct. Mater., Vol. 31, No. 4, p. 2006679, 2021. https://doi.org/10.1002/adfm.202006679
  20. Y. Lee, S. Lim, W. J. Song, S. Lee, S. J. Yoon, J. M. Park, M. G. Lee, Y. L. Park, and J. Y. Sun, "Triboresistive Touch Sensing: grid-free Touch Point Recognition Based on Monolayered Ionic Power Generators", Adv. Mater., p. 2108586, 2022.
  21. T. Chen, Q. Shi, M. Zhu, T. He, L. Sun, L. Yang, and C. Lee, "Triboelectric self-powered wearable flexible patch as 3D motion control interface for robotic manipulator", ACS nano., Vol. 12, No. 11, pp. 11561-11571, 2018. https://doi.org/10.1021/acsnano.8b06747
  22. T. Chen, Q. Shi, K. Li, Z. Yang, H. Liu, L. Sun, J. A. Dziuban, and C. Lee, "Investigation of position sensing and energy harvesting of a flexible triboelectric touch pad", Nanomaterials., Vol. 8, No. 8, p. 613, 2018. https://doi.org/10.3390/nano8080613
  23. K. Zhou, Y. Zhao, X. Sun, Z. Yuan, G. Zheng, K. Dai, L. Mi, C. Pan, C. Liu, and C. Shen, "Ultra-stretchable triboelectric nanogenerator as high-sensitive and self-powered electronic skins for energy harvesting and tactile sensing", Nano Energy., Vol. 70, p. 104546, 2020. https://doi.org/10.1016/j.nanoen.2020.104546
  24. J. He, Z. Xie, K. Yao, D. Li, Y. Liu, Z. Gao, W. Lu, L. Chang, and X. Yu, "Trampoline inspired stretchable triboelectric nanogenerators as tactile sensors for epidermal electronics", Nano Energy., Vol. 81, p. 105590, 2021. https://doi.org/10.1016/j.nanoen.2020.105590
  25. X. Wang, M. Que, M. Chen, X. Han, X. Li, C. Pan, and Z. L. Wang, "Full dynamic-range pressure sensor matrix based on optical and electrical dual-mode sensing", Adv. Mater., Vol. 29, No. 15, p. 1605817, 2017. https://doi.org/10.1002/adma.201605817
  26. C. Chen, L. Chen, Z. Wu, H. Guo, W. Yu, Z. Du, and Z. L. Wang, "3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors", Materials Today, Vol. 32, pp. 84-93, 2020. https://doi.org/10.1016/j.mattod.2019.10.025
  27. Y. W. Cai, X. N. Zhang, G. G. Wang, G. Z. Li, D. Q. Zhao, N. Sun, F. Li, H. Y. Zhang, J. C. Han, and Y. Yang, "A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for E-skin," Nano Energy., Vol. 81, p. 105663, 2021. https://doi.org/10.1016/j.nanoen.2020.105663
  28. B. Ji, Q. Zhou, B. Hu, J. Zhong, J. Zhou, and B. Zhou, "Bio-Inspired Hybrid Dielectric for Capacitive and Triboelectric Tactile Sensors with High Sensitivity and Ultrawide Linearity Range," Adv. Mater., Vol. 33, No. 27, p. 2100859, 2021. https://doi.org/10.1002/adma.202100859
  29. X. Rong, J. Zhao, H. Guo, G. Zhen, J. Yu, C. Zhang, and G. Dong, "Material recognition sensor array by electrostatic induction and triboelectric effects," Advanced Materials Technologies, Vol. 5, No. 9, p. 2000641, 2020.
  30. Z. Song, J. Yin, Z. Wang, C. Lu, Z. Yang, Z. Zhao, Z. Lin, J. Wang, C. Wu, and J. Cheng, "A flexible triboelectric tactile sensor for simultaneous material and texture recognition", Nano Energy., Vol. 93, p. 106798, 2022. https://doi.org/10.1016/j.nanoen.2021.106798
  31. G. Lee, J. H. Son, S. Lee, S. W. Kim, D. Kim, N. N. Nguyen, S. G. Lee, and K. Cho, "Fingerpad-Inspired Multimodal Electronic Skin for Material Discrimination and Texture Recognition", Adv. Sci., Vol. 8, No. 9, p. 2002606, 2021. https://doi.org/10.1002/advs.202002606
  32. X. Zhao, Z. Zhang, L. Xu, F. Gao, B. Zhao, T. Ouyang, Z. Kang, Q. Liao, and Y. Zhang, "Fingerprint-inspired electronic skin based on triboelectric nanogenerator for fine texture recognition", Nano Energy., Vol. 85, p. 106001, 2021. https://doi.org/10.1016/j.nanoen.2021.106001