DOI QR코드

DOI QR Code

Estimation of swimming angle and body impedance of sandfish (Arctoscopus japonicus)

도루묵의 체내 임피던스 및 유영자세각 평가

  • YOON, Euna (Fisheries Resource Research Center, National Institute of Fisheries Science) ;
  • HWANG, Doo-Jin (Department of Marine Production Management, Chonnam National University) ;
  • OH, Wooseok (Division of Fisheries Science, Chonnam National University) ;
  • LEE, Hyungbeen (Fisheries Resource Research Center, National Institute of Fisheries Science) ;
  • LEE, Kyounghoon (Department of Marine Production Management, Chonnam National University)
  • 윤은아 (국립수산과학원 수산자원연구센터) ;
  • 황두진 (전남대학교 해양생산관리학과) ;
  • 오우석 (전남대학교 수산과학과) ;
  • 이형빈 (국립수산과학원 수산자원연구센터) ;
  • 이경훈 (전남대학교 해양생산관리학과)
  • Received : 2022.02.07
  • Accepted : 2022.04.01
  • Published : 2022.05.31

Abstract

Density and sound speed contrasts (g and h, respectively), and swimming angle were measured for sandfish (Arctoscopus japonicus) without swimbladder. The density contrast was measured by the volume displacement method while the sound speed contrast was measured by the acoustic measurements of travel time (time-of-flight method). The swimming angle was measured by dividing it into daytime, nighttime, daytime feeding and nighttime feeding. The g was 1.001 to 1.067 with an average (± standard deviation) of 1.032 (± 0.017), and the h was 1.007 to 1.022 with an average (± standard deviation) of 1.015 (± 0.003). The swimming angles (mean ± standard deviation) were 16.8 ± 10.3° during the daytime, 1.9 ± 12.3° during the nighttime, 30.2 ± 12.6° in the daytime feeding and 35.0 ± 13.2° in the nighttime feeding. These results will provide important parameters input to calculate theoretical scattering models for estimating the acoustic target strength of sandfish.

Keywords

Acknowledgement

이 논문은 2022년도 국립수산과학원 수산과학연구사업(R2022030) 및 2021년 해양수산부 재원으로 해양수산과학기술진흥원(AI 기반 스마트어업관리시스템 개발사업, No. 20210499)의 지원을 받아 수행된 연구입니다. 본 논문을 사려 깊게 검토하여 주신 심사위원님들과 편집위원님께 감사드립니다.

References

  1. Becker KN and Warren JD. 2014. Material properties of Northeast Pacific zooplankton. ICES J Mar Sci 71, 2550-2563. https://doi.org/10.1093/icesjms/fsu109.
  2. Becker KN and Warren JD. 2015. Material properties of Pacific hake, Humboldt squid, and two species of myctophids in the California Current. J Acoust Soc Am 137, 2524-2532. https://doi.org/10.1121/1.4919308.
  3. Demer DA and Conti SG. 2003. Reconciling theoretical versus empirical target strengths of krill: effects of phase variability on the distorted-wave Born approximation. ICES J Mar Sci 60, 429-434. https://doi.org/10.1016/S1054-3139(03)00002-X.
  4. Forman KA and Warren JD. 2010. Variability in the density and sound-speed of coastal zooplankton and nekton. ICES J Mar Sci 67, 10-18. https://doi.org/10.1093/icesjms/fsp217.
  5. Hazen E and Horne J. 2003. A method for evaluating the effects of biological factors on fish target strength. ICES J Mar Sci 60, 555-562. https://doi.org/10.1016/S1054-3139(03)00053-5.
  6. Hirose M, Mukai T, Shimura T, Yamamoto J and Iida K. 2007. Measurements of specific density of and sound speed in Nomura's jellyfish Nemopilema nomurai to estimate their target strength using a theoretical scattering model. J Marine Acoust Soc Jpn 34, 109-118. https://doi.org/10.3135/jmasj.34.109.
  7. Huse I and Ona E. 1996. Tilt angle distribution and swimming speed of overwintering Norwegian spring spawning herring. ICES J Mar Sci 53, 863-873. https://doi.org/10.1006/jmsc.1996.9999.
  8. Iqbal AH, Hwang BK, Shin HO and Kim MS. 2015. Physical parameter measurement and theoretical target strength estimation of Juvenile Cod (Gadus macrocephalus). Ocean and Polar Research 37, 333-340. https://doi.org/10.4217/opr.2015.37.4.333.
  9. Kang DH, Sadayasu K, Mukai T, Iida K, Hwang DJ, Sawada K and Miyashita K. 2004. Target strength estimation of black porgy Acanthopagrus schlegeli using acoustic measurements and a scattering model. Fish Sci 70, 819-828. https://doi.org/10.1111/j.1444-2906.2004.00875.x.
  10. Kim DH. 2015. Evaluating the TAC Policy in the Sandfish Stock Rebuilding Plan. J Fish Bus Adm 46, 29-39. https://doi.org/10.12939/fba.2015.46.1.029.
  11. Kubilius R and Ona E. 2012. Target strength and tilt-angle distribution of lesser sandeel (Ammodytes marinus). ICES J Mar Sci 69, 1099-1107. https://doi.org/10.1093/icesjms/fss093.
  12. Lee SI, Yang JH, Yoon SC, Chun YY, Kim JB, Cha HK and Choi YM. 2009. Biomass estimation of sailfin sandfish, Arctoscopus japonicus, in Korean waters. Kor J Fish Aquat 42, 487-493. https://doi.org/10.5657/kfas.2009.42.5.487.
  13. Lowndes AG. 1942. The displacement method of weighing living aquatic organisms. J Acoust Soc Am 25, 555-574. https://doi.org/10.1017/S0025315400055144.
  14. MacKenzie KV. 1998. Nine-term equation for sound speed in the oceans. J Acoust Soc Am 70, 807-812. https://doi.org/10.1121/1.386920.
  15. MacQuinn IH and Winger PD. 2003. Tilt angle and target strength: target tracking of Atlantic cod (Gadus morhua) during trawling. ICES J Mar Sci 60, 575-583. https://doi.org/10.1016/S1054-3139(03)000390.
  16. Matsukura R, Yasuma H, Murase H, Yonezaki S, Funamoto T, Honda S and Miyashita K. 2009. Measurements of density contrast and sound-speed contrast for target strength estimation of Neocalanus copepods (Neocalanus cristatus and Neocalanus plumchrus) in the North Pacific Ocean. Fish Sci 75, 1377-1387. https://doi.org/10.1007/s12562-009-0172-3.
  17. McClatchie S and Ye Z. 2000. Target strength of an oily deep-water fish, orange roughy (Hoplostethus atlanticus) II. Modeling. J Acoust Soc Am 107, 1280-1285. https://doi.org/10.1121/1.428416.
  18. Mukai T, Iida K, Ando Y, Mikami H, Maki Y and Matsukura R. 2004. Measurements of swimming angles, density, and sound speed of the krill Euphausia pacifica for target strength estimation. Proceeding of MTTS/IEEE Techno-Ocean' 04, Kobe, Japan, 9-12 Nov 2004, 383-388.
  19. Ona E. 2001. Herring tilt angles measured through target tracking. In Herring: expectations for a new millenium. Lowell Wakefield Fisheries Symposia Series, Fair banks, Alaska. 509-519.
  20. Safruddin, Kawauchi Y, Ito Y, Minami K, Itaya K, Maeda K, Matsukura R, Abe K, Yasuma H, Miyashita K. 2013. Tilt angle and theoretical target strength of the Japanese sandeel, ammodytes personatus captured on the northern coast of Hokkaido. J Marine Acoust Soc Jpn 40, 329-338. https://doi.org/10.3135/jmasj.40.329.
  21. Stanton TK and Chu D. 2000. Review and recommendations for the modelling of acoustic scattering by fluid-like elongated zooplankton: euphausiids and copepods. ICES J Mar Sci 57, 793-807. https://doi.org/10.1006/jmsc.1999.0517.
  22. Seo YI, Chung YH and Kim DH. 2014. An analysis on the relationship between prices and catch amounts of sandfish using a cointegration test. J Kor Soc Fish Technol 50, 502-510. https://doi.org/10.3796/ksft.2014.50.4.502.
  23. Shibata K. 1970. Study on details of ultrasonic reflection from individual fish. Bull Fac Fish Nagasaki Univ 29, 1-82.
  24. Smith JN, Ressler PH and Warren JD. 2010. Material properties of euphausiids and other zooplankton from the Bering Sea. J Acoust Soc Am 128, 2664-2680. https://doi.org/10.1121/1.3488673.
  25. Sohn MH, Lee HW, Hong BK and Chun YY. 2010. Seasonal variation of species composition by depths in deep sea ecosystem of the East Sea of Korea. J Kor Soc Fish Tech 46, 376-391. https://doi.org/10.3796/ksft.2010.46.4.376.
  26. Warren JD and Smith JN. 2007. Density and sound speed of two gelatinous zooplankton: Ctenophore (Mnemiopsis leidyi) and lion's mane jellyfish (Cyanea capillata). J Acoust Soc Am 122, 574-580. https://doi.org/10.1121/1.2739433.
  27. Yasuma H, Nakagawa R, Yamakawa T, Miyashita K and Aoki I. 2009. Density and sound-speed contrasts, and target strength of Japanese sandeel Ammodytes personatus. Fish Sci 75, 545-552. https://doi.org/10.1007/s12562-009-0091-3.
  28. Yasuma H, Takao T, Sawada K, Miyashita K and Aoki I. 2006. Target strength of the lanternfish, Stenobrachius leucopsarus (family Myctophidae), a fish without an airbladder, measured in the Bering Sea. ICES J Mar Sci 63, 683-692. https://doi.org/10.1016/j.icesjms.2005.02.016.
  29. Yasuma H. 2004. Studies on the acoustical biomass estimation of myctophid fishes. PhD Thesis, The University of Tokyo. 1-237.
  30. Yoon EA, Lee KH, Hwang KS, Lee HB, Han IW and Hwang DJ. 2016. Acoustical backscattering characteristic depending on the changes in the body of sandfish (Arctoscopus japonicus). J Korean Soc Fish Technol 52, 36-41. https://doi.org/10.3796/ksft.2016.52.1.036.