DOI QR코드

DOI QR Code

Degradation of buckling capacity of slender concrete-filled double skin steel tubular columns due to interface compliance

  • Cas, Bojan (Faculty of Civil and Geodetic Engineering, University of Ljubljana) ;
  • Schnabl, Simon (Faculty of Civil and Geodetic Engineering, University of Ljubljana)
  • Received : 2020.11.04
  • Accepted : 2022.03.10
  • Published : 2022.06.10

Abstract

In this paper a novel mathematical model and its analytical solution of global buckling behaviour of slender elastic concrete-filled double-skin tubular (CFDST) columns with finite compliance between the steel tubes and a sandwiched concrete core is derived for the first time. The model is capable of investigating the influence of various basic parameters on critical buckling loads of CFDST columns. It is shown that the elastic buckling load of circular and slender CFDST columns is independent on longitudinal contact stiffness, but, on the other hand, it can be considerably dependent on circumferential contact stiffness. The increasing of the circumferential contact stiffness increases the critical buckling load. Furthermore, it is shown that analytical results can agree well with the experimental and numerical results if the calibrated values of circumferential contact stiffness are used in the calculations. Moreover, it is shown that the contact between the steel tubes and a sandwiched concrete core of tested large-scale CFDST columns used in the comparison is relatively weak. Finally, the proposed analytical results can be used as a benchmark solution.

Keywords

Acknowledgement

The authors acknowledge the financial support from the Slovenian Research Agency (research core funding No. P2-0260).

References

  1. AISC (2010), Load and Resistance Factor Design Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, USA.
  2. Chen, J., Ni, Y.Y. and Jin, W.L. (2015), "Column tests of dodecagonal section double skin concrete-filled steel tubes", Thin Wall. Struct., 88, 28-40. https://doi.org/10.1016/j.tws.2014.11.013.
  3. Elchalakani, M., Zhao, X.L. and Grzebieta, R. (2002), "Tests on concrete filled double-skin (CHS outer and SHS inner) composite short columns under axial compression", Thin Wall. Struct., 40, 415-441. https://doi.org/10.1016/S0263-8231(02)00009-5.
  4. EN 1994-1-1: Eurocode 4 (1992), Design of Composite Steel and Concrete Structures, European Committee for Standardization, Brussels.
  5. Essopjee, Y. and Dundu, M. (2015), "Performance of concrete-filled double-skin circular tubes in compression", Compos. Struct., 133, 1276-1283. https://doi.org/10.1016/j.compstruct.2015.08.033.
  6. Han, L.H., Tao, Z., Huang, H. and Zhao, X.L. (2004), "Concrete-filled double-skin (SHS outer and CHS inner) steel tubular beam-columns", Thin Wall. Struct., 42, 1329-1355. https://doi.org/10.1016/j.tws.2004.03.017.
  7. Hassanein, M.F. and Kharoob, O.F. (2014a), "Analysis of circular concrete-filled double skin tubular slender columns with external stainless steel tubes", Thin Wall. Struct., 79, 23-37. https://doi.org/10.1016/j.tws.2014.01.008.
  8. Hassanein, M.F. and Kharoob, O.F. (2014b), "Compressive strength of circular concrete-filled double skin tubular short columns", Thin Wall. Struct., 77, 165-173. https://doi.org/10.1016/j.tws.2013.10.004.
  9. Hassanein, M.F., Kharoob, O.F. and Gardner, L. (2015), "Behaviour and design of square concrete-filled double skin tubular columns with inner circular tubes", Eng. Struct., 100, 410-424. https://doi.org/10.1016/j.engstruct.2015.06.022.
  10. Hassanein, M.F., Kharoob, O.F. and Liang, Q.Q. (2013), "Circular concrete-filled double skin tubular short columns with external stainless steel tubes under axial compression", Thin Wall. Struct., 73, 252-263. https://doi.org/10.1016/j.tws.2013.08.017.
  11. Hu, H.T. and Su, F.C. (2011), "Nonlinear analysis of short concrete-filled double skin tube columns subjected to axial compressive forces", Marine Struct., 24, 319-337. https://doi.org/10.1016/j.marstruc.2011.05.001.
  12. Huang, H., Han, L.H., Tao, Z. and Zhao, X.L. (2010), "Analytical behaviour of concrete-filled double skin steel tubular (CFDST) stub columns", J. Constr. Steel Res., 66, 542-555. https://doi.org/10.1016/j.jcsr.2009.09.014.
  13. Imani, R., Mosqueda, G. and Bruneau, M. (2015), "Finite element simulation of concrete-filled double-skin tube columns subjected to postearthquake fires", J. Constr. Steel Res., 141(12), 04015055. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001301.
  14. Kryzanowski, A., Planinc, I. and Schnabl, S. (2014), "Slip-buckling analysis of longitudinaly delaminated composite columns", Eng. Struct., 76, 404-414. https://doi.org/10.1016/j.engstruct.2014.07.028.
  15. Kryzanowski, A., Schnabl, S., Turk, G. and Planinc, I. (2009), "Exact slip-buckling analysis of two-layer composite columns", Int. J. Solid. Struct., 46, 2929-2938. https://doi.org/10.1016/j.ijsolstr.2009.03.020.
  16. Li, W., Wang, D. and Han, L.H. (2017), "Behaviour of grout-filled double skin steel tubes under compression and bending: Experiments", Thin Wall. Struct., 166, 307-319. https://doi.org/10.1016/j.tws.2017.02.029.
  17. Liang Q.Q. (2017), "Nonlinear analysis of circular double-skin concrete-filled steel tubular columns under axial compression", Eng. Struct., 131, 639-650. https://doi.org/10.1016/j.engstruct.2016.10.019.
  18. Liang Q.Q. (2018), "Numerical simulation of high strength circular double-skin concrete-filled steel tubular slender columns", Eng. Struct., 168, 205-217. https://doi.org/10.1016/j.engstruct.2018.04.062.
  19. Pagoulatou, M., Sheehan, T., Dai, X.H. and Lam, D. (2014), "Finite element analysis on the capacity of circular concrete-filled double-skin steel tubular (CFDST) stub columns", Eng. Struct., 72, 102-112. https://doi.org/10.1016/j.engstruct.2014.04.039.
  20. Perko, L. (2001), Differential Equations and Dynamical Systems, 3rd Edition, Springer-Verlag, NJ, USA.
  21. Reissner, E. (1972), "On one-dimensional finite-strain beam theory: The plane problem", J. Appl. Mech. Phys., 23, 795-804. https://doi.org/10.1007/BF01602645.
  22. Ren, Q.X., Hou, C., Lam, D. and Han, L.H. (2014), "Experiments on the bearing capacity of tapered concrete filled double skin steel tubular (CFDST) stub columns", Steel Compos. Struct., 17(5), 667-686. https://doi.org/10.12989/scs.2014.17.5.667.
  23. Romero, M.L., Espinos, A., Portoles, J.M., Hospitaler, A. and Ibanez, C. (2015), "Slender double-tube ultra-high strength concrete-filled tubular columns under ambient temperature and fire", Eng. Struct., 99, 536-545. https://doi.org/10.1016/j.engstruct.2015.05.026.
  24. Romero, M.L., Ibanez, C., Espinos, A., Portoles, J.M. and Hospitaler, A. (2017), "Influence of ultra-high strength concrete on circular concrete-filled dual steel columns", Struct., 9, 13-20. https://doi.org/10.1016/j.istruc.2016.07.001.
  25. Schnabl, S. and Planinc, I. (2010), "The influence of boundary conditions and axial deformability on buckling behavior of two-layer composite columns with interlayer slip", Eng. Struct., 32(10), 3103-3111. https://doi.org/10.1016/j.engstruct.2010.05.029.
  26. Schnabl, S. and Planinc, I. (2011a), "The effect of transverse shear deformation on the buckling of two-layer composite columns with interlayer slip", Int. J. Nonlin. Mech., 46(3), 543-553. https://doi.org/10.1016/j.ijnonlinmec.2011.01.001.
  27. Schnabl, S. and Planinc, I. (2011b), "Inelastic buckling of two-layer composite columns with non-linear interface compliance", Int. J. Mech. Sci., 53(12), 1077-1083. https://doi.org/10.1016/j.ijmecsci.2011.09.002.
  28. Schnabl, S. and Planinc, I. (2013), "Exact buckling loads of two-layer composite Reissner's columns with interlayer slip and uplift", Int. J. Solid. Struct., 50, 30-37. https://doi.org/10.1016/j.ijsolstr.2012.08.027.
  29. Schnabl, S. and Planinc, I. (2017), "Buckling of slender concrete-filled steel tubes with compliant interfaces", Lat. Am. J. Solid. Struct., 14(10), 1837-1852. https://doi.org/10.1590/1679-78253479.
  30. Schnabl, S. and Planinc, I. (2019), "Circumferential gap and partial debonding effects on buckling loads and modes of slender CFST circular columns", Acta Mechanica, 230, 909-928. https://doi.org/10.1590/1679-78253479.
  31. Schnabl, S., Jelenic, G. and Planinc, I. (2015), "Analytical buckling of slender circular concrete-filled steel tubular columns with compliant interfaces", J. Constr. Steel Res., 115, 252-262. https://doi.org/10.1016/j.jcsr.2015.08.035.
  32. Schnabl, S., Planinc, I., Saje, M., Cas, B. and Turk, G. (2006), "An analytical model of layered continuous beams with partial interaction", Struct. Eng. Mech., 22(3), 263-278. http://doi.org/10.12989/sem.2006.22.3.263.
  33. Schnabl, S., Saje, M., Turk, G. and Planinc, I. (2007), "Analytical solution of two-layer beam taking into account interlayer slip and shear deformation", J. Struct. Eng., ASCE, 133(6), 886-894. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:6(886).
  34. Skec, L., Schnabl, S., Planinc, I. and Jelenic, G. (2012), "Analytical modelling of multilayer beams with compliant interfaces", Struct. Eng. Mech., 44(4), 465-485. http://doi.org/10.12989/sem.2012.44.4.465.
  35. Talaeitaba, S.B., Halabian, M. and Torki, M.E. (2015), "Nonlinear behavior of FRP-reinforced concrete-filled double-skin tubular columns using finite element analysis", Thin Wall. Struct., 95, 389-407. https://doi.org/10.1016/j.tws.2015.07.018.
  36. Tan, K.H. and Zhang, Y.F. (2010), "Compressive stiffness and strength of concrete filled double skin (CHS inner and CHS outer) tubes", Int. J. Mech. Mater. Des., 6, 283-291. https://doi.org/10.1007/s10999-010-9138-y.
  37. Tao, Z., Han, L.H. and Zhao, X.L. (2004), "Behaviour of concrete-filled double-skin (CHS inner and CHS outer) steel tubular stub columns and beam-columns", J. Constr. Steel Res., 60, 1129-1158. https://doi.org/10.1016/j.jcsr.2003.11.008.
  38. Wang, J., Liu, W., Zhou, D., Zhu, L. and Han, L.H. (2014), "Mechanical behavior of concrete filled double skin steel tubular stub columns confined by FRP under axial compression", Steel Compos. Struct., 17(4), 431-452. http://doi.org/10.12989/scs.2014.17.4.431.
  39. Wang, R., Han, L.H., Zhao, X.L. and Rasmussen, K.J.R. (2016), "Analytical behavior of concrete filled double steel tubular (CFDST) members under lateral impact", Thin Wall. Struct., 101, 129-140. https://doi.org/10.1016/j.tws.2015.12.006.
  40. Wang, R., Han, L.H., Zhao, X.L. and Rasmussen, K.J.R. (2016), "Analytical behavior of concrete filled double steel tubular (CFDST) members under lateral impact", Thin Wall. Struct., 101, 129-140. https://doi.org/10.1016/j.tws.2015.12.006.
  41. Wolfram Mathematica (2017), https://www.wolfram.com/mathematica
  42. Yang, Y.F., Han, L.H. and Sun, B.H. (2012), "Experimental behaviour of partially loaded concrete filled double-skin steel tube (CFDST) sections", J. Constr. Steel Res., 71, 63-73. https://doi.org/10.1016/j.jcsr.2011.11.005.
  43. Zhou, F. and Young, B. (2018), "Concrete-filled double-skin aluminum circular hollow section stub columns", Thin Wall. Struct., 133, 141-152. https://doi.org/10.1016/j.tws.2018.09.037.