DOI QR코드

DOI QR Code

Combustion Efficiency Estimation Method of Solid Propellants and the Effects of Grain Shape using Closed Bomb Test

CBT를 이용한 고체 추진제의 연소효율 도출 방법과 그레인 형상의 영향 분석

  • Jonggeun Park (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Hong-Gye Sung (School of Aerospace and Mechanical Engineering, Smart Air Mobility Engineering, Korea Aerospace University) ;
  • Wonmin Lee (Research and Development Section, Hanwha Corporation Yeosu Plant) ;
  • Eunmi Kim (Research and Development Section, Hanwha Corporation Yeosu Plant)
  • Received : 2022.09.26
  • Accepted : 2022.12.06
  • Published : 2022.12.31

Abstract

The estimation method of combustion efficiency has been introduced by using closed bomb test(CBT). The Noble-Abel equation of state was applied to consider the real gas effects to take account of high operation pressure about a couple of 100 atm. of CBT. The heat loss through the CBT wall was considered. The volume change of grain was calculated by applying form functions, which estimated combustion efficiency of 8 different gain shapes. The combustion estimation method proposed in this study was fairly validated by the comparision with the pressure-time history data of the CBT experiments. The effects of both grain shape and propellant loading density were analyzed.

본 연구에서는 CBT(Closed Bomb Test)시험을 통하여 고체추진제의 연소효율을 추정하는 방법을 제시하였다. CBT는 수백 기압에서 작동하므로 실기체의 영향을 고려하기 위해 Noble-Abel 상태방정식을 적용하였다. 또한 밀폐용기 벽면으로 발생하는 열손실을 고려하였다. 그레인의 연소로 인한 그레인의 체적 변화율 계산은 형상 함수(Form Function)를 적용하였으며, 총 8개의 다른 형태 그레인의 연소 효율을 도출하였다. 본 연구에서 제시한 이론모델의 적절성을 실험 결과인 압력-시간 선도와 비교하여 나타내었다. 그레인 형상과 추진제의 충진량에 따른 연소효율을 도출하였다.

Keywords

Acknowledgement

본 연구는 방위산업기술지원센터의 지원(사업명: 화포 추진제 및 추진성능 예측 SW기술, 과제번호: UC190003D)하에 수행되었습니다.

References

  1. Lysien, K., Stolarczyk, A. and Jarosz, Tomasz., "Solid Propellant Formulations : A Review of Recent Progress," Materials, Vol. 14, 2021.
  2. Konecny, P. and Z. Krizan. "Determination of black powder burning rate," Advances in Military Technology, Vol. 3, No. 2, 11-18, 2008.
  3. Gupta, G., Jawale, L., Mehilal, D. and Bhattacharya, B., "Various Methods for the Determination of the Burning Rates of Solid Propellants - An Overview," Central European Journal of Energetic Materials, Vol. 12, No. 3, pp. 593-620, 2015.
  4. Sung, H.-G. and Yoo, J.C., "Burning Rate Characteristics of Solid Propellant at Extremely High Pressure," Journal of the Korean Society of Propulsion Engineers, Vol. 10, No. 3, pp. 60-66, 2006.
  5. Choi, H.Y., Lee, D.S., Sung, H.G., Lee, W.M. and Kim, E.M., "Burning Rate Estimate Method of Solid Propellants at High Pressure Condition," Journal of Korean Society of Propulsion Engineers, Vol. 26, No. 1, pp. 28-37, 2021.
  6. Han, D.H., Sung, H.G. and Ryu, B.T., "Parametric Analysis and Design Optimization of a Pyrotechnically Actuated Device," International Journal of Aeronautical and Space Sciences, Vol. 17, No. 3, pp. 409-422, 2016. https://doi.org/10.5139/IJASS.2016.17.3.409
  7. Gordon, S. and McBride, B.J., "Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications: I. Analysis," NASA, Cleveland, O.H., U.S.A., NASA RP-1311, 1994.
  8. Saha, Krishnendu and Sumanta Acharya., "Heat transfer enhancement using angled grooves as turbulence promoters," Journal of Turbomachinery, Vol. 136, No. 8, 2014.
  9. Vittal, D. and Singh, S., "Form Function for Propellants in Closed Vessel Work," Propellants, Explosives, Pyrotechnics, Vol. 5, No. 1, pp. 9-14, 1980. https://doi.org/10.1002/prep.19800050103
  10. Kubota, N., Propellants and Explosives: Thermochemical Aspects of Combustion, 3rd ed., John Wiley & Sons Inc., New York, N.Y., U.S.A., 2015.
  11. Y. Ata, "Numerical burnback analysis of three dimensional solid propellant grains," M.S. - Master of Science, Middle East Technical University, 2015.