DOI QR코드

DOI QR Code

환형연소기에서 불안정성에 따른 유동적인 대칭성파괴 효과 Part I : 노즐 배치의 특성

Flow Symmetry Breaking Effect According to Instability in Annular Combustor Part.I : Characteristics of Nozzle Arrangement

  • Huido Lee (School of Mechanical and Aerospace Engineering/Center for Aerospace Eng. Research, Sunchon National University) ;
  • Keeman Lee (School of Mechanical and Aerospace Engineering/Center for Aerospace Eng. Research, Sunchon National University)
  • 투고 : 2022.05.31
  • 심사 : 2022.11.19
  • 발행 : 2022.12.31

초록

본 연구에서는 환형연소기 형태를 가지는 가스터빈 연소기에서 연소불안정성을 제어하는 방법을 제시하고자 하였으며, 노즐 배치와 이에 따른 당량비 변화를 통한 유동적인 대칭성파괴(Flow symmetry breaking) 효과를 비교하였다. 이를 위하여 FFT, Time signal 및 위상궤적의 모드 분석을 통하여 대칭성파괴 효과를 확인하였다. 또한, 모드분석으로 불안정한 영역과 안정된 영역을 확인하였고 이를 등고선 지도에 나타내었다. 본 연구를 통해 노즐의 당량비와 배치가 대칭이거나 노즐이 연속적으로 배치되면 불안정성이 발생하였으나, 노즐의 배치 및 당량비가 대칭성을 가지질 않는다면 당량비의 차이가 작더라도 연소불안정성이 극적으로 감소하는 것을 확인할 수 있었다.

This research proposes a method to control combustion instability in a gas turbine combustor having an annular combustor form and compares the effect of flow symmetric braking through nozzle arrangement and the corresponding change in equivalent ratio. To this end, the symmetry breaking effect was confirmed through mode analysis of FFT, Time signal, and phase trajectory. In addition, the unstable area and the stable area were identified through mode analysis, and this was shown on the contour map. The present research shows that instability occurs when the equivalent ratio and the arrangement of the nozzles are symmetry or when the nozzles are continuously arranged, but if the arrangement and equivalent ratio are not symmetry, the combustion instability decreases dramatically even if the difference in the equivalent ratio is small.

키워드

과제정보

이 논문은 2022년도 정부(산업통산자원부)의 재원으로 한국에너지기술평가원의 에너지기술개발사업(2020671010060, 분산발전 가스터빈용 수소전소 저 NOx 연소기 개발)과 에너지기술개발사업(20181110100290, 발전용 H급 can-type 저선회 버너 원천기술 개발)의 지원을 받아 작성되었습니다.

참고문헌

  1. K. Prieur, D. Durox, T. Schuller and S. Candel, "A hysteresis phenomenon leading to spinning or standing azimuthal instabilities in an annular combustor," Combustion and Flame, Vol. 175, pp. 283-291 2017. https://doi.org/10.1016/j.combustflame.2016.05.021
  2. S. Evesque and W. Polifke, C. Pankiewitz, "Spinning and azimuthally standing acoustic modes in annular combustors," 9th AIAA/CEAS Aeroacoustics Conference and Exhibit, pp. 1-8, 2003.
  3. N. A. Worth and J. R. Dawson, "Effect of equivalence ratio on the modal dynamics of azimuthal combustion instabilities," Proceedings of the Combustion Institute, Vol. 36, pp. 3743-3751, 2017. https://doi.org/10.1016/j.proci.2016.06.115
  4. J. Wang, P. Rubini, Q. Qin and B. Houston, "A model to predict acoustic resonant frequencies of distributed helmholtz resonators on gas turbine engines," Applied Sciences, Vol. 9, 1419, 2019.
  5. N. A. Worth and J. R. Dawson, J. AM sidey, E. Mastorakos, "Azimuthally forced flames in an annular combustor," Proceeding of the Combustion Insatitute, Vol. 36, pp. 3783-3790, 2017. https://doi.org/10.1016/j.proci.2016.06.107
  6. R. Balachandran, B. O. Ayoola, C. F. Kaminski and A. P. Dowling, E. Mastorakos, "Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations," Combustion and Flame, Vol. 143, pp. 37-55, 2005. https://doi.org/10.1016/j.combustflame.2005.04.009
  7. Yoon, J., Joo, S., Kim, J., Lee, M., Lee, J. and Yoon, Y., "Effects of convection time on the high harmonic combustion instability in a partially premixed combustor," Proceedings of the Combustion Institute, Vol. 36, pp. 3753-3761, 2017. https://doi.org/10.1016/j.proci.2016.06.105
  8. Shin, Y., Jeon S. and Kim, Y., "Combustion Instability Analysis of LIMOUSINE Burner using LES-based Combustion Model and Helmholtz Equation," J. Korean Soc. Combus., Vol. 22, pp. 41-46, 2017.
  9. C. Li, D. Yang, S. Li and M. Zhu, "An analytical study of the effect of flame response to simultaneous axial and transverse perturbations on azimuthal thermoacoustic modes in annular combustors," Proceedings of the Combustion Institute, Vol. 37, pp. 5279-5287, 2019. https://doi.org/10.1016/j.proci.2018.05.121
  10. N. Noiray, M. Bothien and B. Schuermans, "Investigation of azimuthal staging concepts in annular gas turbines," Combustion Theory and Modelling, Vol, 15, pp. 585-606, 2011. https://doi.org/10.1080/13647830.2011.552636
  11. N. A. Worth and J. R. Dawson, Modal dynamics of self-excited azimuthal instabilities in an annular combustion chamber," Combustion and Flame, Vol. 160, pp. 2476-2489, 2013. https://doi.org/10.1016/j.combustflame.2013.04.031
  12. J. R. Dawson and N. A. Worth, "The effect of baffles on self-excited azimuthal modes in an annular combustor," Proceedings of the Combustion Institute, Vol. 35, pp. 3283-3290, 2015. https://doi.org/10.1016/j.proci.2014.07.011
  13. M. Bauerheim and T. Poinsot, "Analytical methods for azimuthal thermo-acoustic modes in annular combustion chambers," Center for Turbulence Research, pp. 77-88, 2015.
  14. M. Bauerheim, P. Salas, F. Nicoud and T. Poinsot, "Symmetry breaking of azimuthal thermo-acoustic modes in annular cavities: a theoretical study," J. Fluid Mech. Vol. 760, 431-465, 2014. https://doi.org/10.1017/jfm.2014.578
  15. N. Noiray, M. Bothien and B. Schuermans, "Investigation of azimuthal staging concepts in annular gas turbines," Combust. Theory and Modelling, Vol. 15, 2011.
  16. M. Bauerheim, M. Cazalens and T. Poinsot, "A theoretical study of mean azimuthal flow and asymmetry effects on thermo-acoustic modes in annular combustors," Proceedings of the Combustion Institute, Vol. 35, 3219-3227, 2015. https://doi.org/10.1016/j.proci.2014.05.053
  17. G. Ghirardo and M. P. Juniper, "Azimuthal instabilities in annular combustors: standing and spinning modes," Proceeding of the Royal Society A, 469, 2013.
  18. C. Li, D. Yang, S. Li and M. Zhu, "An analytical study of the effect of flame response to simultaneous axial and transverse perturbations on azimuthal thermoacoustic modes in annular combustors," Proceeding of the Combustion Insatitute, Vol. 37, 5279-5287, 2019. https://doi.org/10.1016/j.proci.2018.05.121
  19. Moon, K., Jegal, H., Gu, J. and Kim, K., "Combustion-acoustic interactions through cross-talk area between adjacent model gas turbine combustors," Combustion and Flame Vol. 202 405-416, 2019. https://doi.org/10.1016/j.combustflame.2019.01.027
  20. Moon, K.H. and Kim, K.T., "Self-Excited Azimuthal Instabilities in a Can-Annular Combustion System," J. Korean Soc. Combust., Vol. 27, 9-16, 2022. https://doi.org/10.15231/jksc.2022.27.1.009
  21. Lee, H., Kim, J. and Lee, K.M., "Control of the Longitudinal Instability by Symmetry Breaking in the Can Burner Simulating Annular Nozzle," J. Korean Soc. Propulsion Engineers., pp. 66-78, 2021.
  22. Guan, M. Murugesan and L.K.B. Li, "Strange Non-chaotic and Chaotic Attractors in a Self-Excited Thermoacoustic Oscillator Subjected to External Periodic Forcing," Chaos, Vol. 28 093109, 2018.