DOI QR코드

DOI QR Code

Change in the Sensitivity to Propiconazole of Fusarium graminearum Species Complex Causing Head Blight of Barley and Wheat in Jeolla Province

전남북 지역 맥류 붉은곰팡이병균의 Propiconazole 약제에 대한 감수성 변화

  • Jiseon Baek (Microbial Safety Division, National Institute of Agricultural Sciences) ;
  • Ju-Young Nah (Microbial Safety Division, National Institute of Agricultural Sciences) ;
  • Mi-Jeong Lee (Microbial Safety Division, National Institute of Agricultural Sciences) ;
  • Su-Bin Lim (Microbial Safety Division, National Institute of Agricultural Sciences) ;
  • Jung-Hye Choi (Microbial Safety Division, National Institute of Agricultural Sciences) ;
  • Ja Yeong Jang (Microbial Safety Division, National Institute of Agricultural Sciences) ;
  • Theresa Lee (Microbial Safety Division, National Institute of Agricultural Sciences) ;
  • Hyo-Won Choi (Crop Protection Division, National Institute of Agricultural Sciences) ;
  • Jeomsoon Kim (Microbial Safety Division, National Institute of Agricultural Sciences)
  • 백지선 (국립농업과학원 유해생물과) ;
  • 나주영 (국립농업과학원 유해생물과) ;
  • 이미정 (국립농업과학원 유해생물과) ;
  • 임수빈 (국립농업과학원 유해생물과) ;
  • 최정혜 (국립농업과학원 유해생물과) ;
  • 장자영 (국립농업과학원 유해생물과) ;
  • 이데레사 (국립농업과학원 유해생물과) ;
  • 최효원 (국립농업과학원 작물보호과) ;
  • 김점순 (국립농업과학원 유해생물과)
  • Received : 2022.10.19
  • Accepted : 2022.11.25
  • Published : 2022.12.31

Abstract

Fusarium head blight is an important disease of small grains. It is mainly caused by members of the Fusarium graminearum species complex (FGSC). Barley and wheat growers spray fungicides, especially demethylation-inhibitor fungicides, to suppress the disease. The objective of this study was to examine the changes in the sensitivity of the FGSC population to the triazole fungicide, propiconazole. A total of 124 and 350 isolates of FGSC were obtained from barley and wheat in Jeolla Province during 2010-2016 and 2020-2021, respectively. The species identity and trichothecene chemotypes of the FGSC isolates were determined based on polymerase chain reaction assays targeting translation elongation factor 1-alpha and TRI12 genes, respectively. Sensitivity to propiconazole was determined based on the effective concentration that reduced 50% of the mycelial growth (EC50) using the agar dilution method. Of all isolates, F. asiaticum with the nivalenol chemotype was the most common (83.9% in 2010-2016 and 96.0% in 2020-2021), followed by F. asiaticum with the 3-acetyl deoxynivalenol chemotype (12.1% in 2010-2016 and 2.9% in 2020-2021). The EC50 values of the isolates collected in 2010-2016 and 2020-2021 ranged from 0.0180 to 11.0166 ㎍/mL and 1.3104 to 17.9587 ㎍/mL, respectively. The mean EC50 value of the isolates increased from 3.8648 ㎍/mL in 2010-2016 to 5.9635 ㎍/mL in 2020-2021. The baseline resistance to propiconazole was determined to be 7 ㎍/mL, based on the EC50 value of isolates collected in 2010-2016, and the ratio of resistant isolates increased from 9.7% in 2010-2016 to 28.6% in 2020-2021.

붉은곰팡이병은 곡류의 중요한 병이며 Fusarium graminearum species complex (FGSC)에 속하는 균들에 의해 발생한다. 맥류 재배 농가들은 이 병을 방제하기 위해 탈메틸화 억제제인 triazole계 살균제를 살포한다. 본 연구는 FGSC 집단에서 triazole계 살균제인 propiconazole에 대한 감수성의 변화를 조사하기 위해 수행되었다. 2010-2016년과 2020-2021년 동안 전남북의 보리와 밀에서 124개와 350개의 FGSC 균주를 각각 분리하였다. 균주들의 종 동정 및 트리코테센 독소화학형은 각각 translation elongation factor 1-alpha 및 TRI12 유전자를 표적으로 하는 PCR 분석을 기반으로 결정되었다. propiconazole에 대한 민감도는 한천 희석법을 사용하여 균사체 성장을 50% 감소시키는 유효 농도(EC50)를 기준으로 결정되었다. 모든 균주에서 nivalenol 독소화학형의 F. asiaticum이 가장 많았으며(2010-2016년 83.9%, 2020-2021년 96.0%), 3-acetyl deoxynivalenol 독소화학형의 F. asiaticum (2010-2016년 12.1%, 2020-2021년 2.9%)이 그 다음이었다. 2010-2016년과 2020-2021년에 수집된 균주의 EC50 값은 각각 0.0180-11.0166 ㎍/mL 및 1.3104-17.9587 ㎍/mL 범위였으며, 평균 EC50 값은 2010-2016년 3.8648 ㎍/mL에서 2020-2021년 5.9635 ㎍/mL로 증가했다. 2010-2016년 균주의 EC50 값을 바탕으로 7.0 ㎍/mL을 저항성 기준으로 정하였고, 저항성 균주의 수는 2010-2016년 9.7%에서 2020-2021년 28.6%로 증가한 것으로 나타났다.

Keywords

Acknowledgement

This study was carried out with the support of Research Program for Agricultural Science & Technology Development (Project No. PJ014895), National Institute of Agricultural Sciences, Rural Development Administration, Republic of Korea.

References

  1. O'Donnell K, Kistler HC, Tacke BK, Casper HH. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc Natl Acad Sci USA 2000;97:7905-10.  https://doi.org/10.1073/pnas.130193297
  2. Lee SH, Lee J, Nam YJ, Lee S, Ryu JG, Lee T. Population structure of Fusarium graminearum from maize and rice in 2009 in Korea. Plant Pathol J 2010;26:321-7.  https://doi.org/10.5423/PPJ.2010.26.4.321
  3. Jang JY, Baek SG, Choi JH, Kim S, Kim J, Kim DW, Yun SH, Lee T. Characterization of nivalenol-producing Fusarium asiaticum that causes cereal head blight in Korea. Plant Pathol J 2019;35:543-52.  https://doi.org/10.5423/PPJ.OA.06.2019.0168
  4. Choi JH, Nah JY, Jin HS, Lim SB, Paek JS, Lee MJ, Jang JY, Lee T, Hong SK, Kim J. Identification and chemotype profiling of Fusarium species in Korean oat. Res Plant Dis 2019;25:1-7.  https://doi.org/10.5423/RPD.2019.25.1.1
  5. Wegulo SN, Baenziger PS, Nopsa JH, Bockus WW, Hallen-Adams H. Management of Fusarium head blight of wheat and barley. Crop Prot 2015;73:100-7.  https://doi.org/10.1016/j.cropro.2015.02.025
  6. FRAC Code List ©*2022. Fungicide Resistance Action Committee [Internet]. Brussels: CropLife Internatioal; 2022. [cited 2022 Oct 14]. Available from: https://www.frac.info/docs/default-source/publications/frac-code-list/frac-code-list-2022--final.pdf?sfvrsn=b6024e9a_2. 
  7. Shin MU, Kang HJ, Lee YH, Kim HT. Detection for the resistance of Fusarium spp. isolated from rice seeds to prochloraz and cross-resistance to other fungicides inhibiting sterol biosynthesis. Kor J Pestic Sci 2008;12:277-82. 
  8. Lee YH, Kim SY, Choi HW, Lee MJ, Ra DS, Kim IS, Park JW, Lee SW. Fungicide resistance of Fusarium fujikuroi isolates isolated in Korea. Kor J Pestic Sci 2010;14:427-32. 
  9. Choi HW, Lee YH, Hong SK, Lee YK, Nam YJ, Lee JG, Han SH. Monitoring for the resistance to prochloraz of Fusarium species causing bakanae disease in Korea. Kor J Mycol 2015;43:112-7. 
  10. Yang HF, Ji MX, Yao KB, Shu ZL. Study on resistance of Fusarium monilifore to prochloraz and its management. Acta Agriculturae Jiangxi 2013;25:94-6. 
  11. Schnabel G, Bryson PK, Bridges WC, Brannen PM. Reduced sensitivity in Monilinia fructicola to propiconazole in Georgia and implications for disease management. Plant Dis 2004;88:1000-4.  https://doi.org/10.1094/PDIS.2004.88.9.1000
  12. Zehr EI, Luszcz LA, Olien WC, Newall WC, Toler JE. Reduced sensitivity in Monilinia fructicola to propiconazole following prolonged exposure in peach orchards. Plant Dis 1999;83:913-6.  https://doi.org/10.1094/PDIS.1999.83.10.913
  13. Bishop P, Sorochan J, Ownley BH, Samples TJ, Windham AS, Windham MT, Trigiano RN. Resistance of Sclerotinia homoeocarpa to iprodione, propiconazole, and thiophanate-methyl in Tennessee and Northern Mississippi. Crop Sci 2008;48:1615-20.  https://doi.org/10.2135/cropsci2007.11.0635sc
  14. Yin Y, Liu X, Li B, Ma Z. Characterization of sterol demethylation inhibitor-resistant isolates of Fusarium asiaticum and F. graminearum collected from wheat in China. Phytopathology 2009;99:487-97.  https://doi.org/10.1094/PHYTO-99-5-0487
  15. Talas F, McDonald BA. Significant variation in sensitivity to a DMI fungicide in field population of Fusarium graminearum. Plant Pathol 2015;64:664-70.  https://doi.org/10.1111/ppa.12280
  16. Becher R, Hettwer U, Karlovsky P, Deising HB, Wirsel SGR. Adaptation of Fusarium graminearum to tebuconazole yielded descendants diverging for levels of fitness, fungicide resistance, virulence, and mycotoxin production. Phytopathology 2010;100:444-53.  https://doi.org/10.1094/PHYTO-100-5-0444
  17. Anderson NR, Freije AN, Bergstrom GC, Bradley CA, Cowger CC, Faske T, Hollier C, Kleczewski N, Padgett GB, Paul P. Sensitivity of Fusarium graminearum to metconazole and tebuconazole fungicide before and after widespread use in wheat in the United States. Plant Health Progress 2020;21:85-90.  https://doi.org/10.1094/PHP-11-19-0083-RS
  18. Spolti P, Del Ponte EM, Dong Y, Cummings JA, Bergstrom GC. Triazole sensitivity in a contemporary population of Fusarium graminearum from New York wheat and competitiveness of a tebuconazole-resistant isolate. Plant Dis 2014 98:607-13.  https://doi.org/10.1094/PDIS-10-13-1051-RE
  19. Starkey DE, Ward TJ, Aoki T, Gale LR, Kistler HC, Geiser DM, Suga H, Toth B, Varga J, O'Donnell K. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet Biol 2007;44:1191-204.  https://doi.org/10.1016/j.fgb.2007.03.001
  20. Lee J, Chang IY, Kim H, Yun SH, Leslie JF, Lee YW. Genetic diversity and fitness of Fusarium graminearum populations from rice in Korea. Appl Environ Microbiol 2009;75:3289-95.  https://doi.org/10.1128/AEM.02287-08
  21. Zhang H, van der Lee T, Waalwijk C, Chen W, Xu J, Xu J, Zhang Y, Feng J. Population analysis of the Fusarium graminearum species complex from wheat in China show a shift to more aggressive isolates. PLoS ONE 2012;7:e31722. 
  22. Suga H, Karugia GW, Ward T, Gale LR, Tomimura K, Nakajima T, Miyasaka A, Koizumi S, Kageyama K, Hyakumachi M. Molecular characterization of the Fusarium graminearum species complex in Japan. Phytopathology 2008;98:159-66.  https://doi.org/10.1094/PHYTO-98-2-0159
  23. Hirooka T, Ishii H. Chemical control of plant diseases. J Gen Plant Pathol 2013;79:390-401.  https://doi.org/10.1007/s10327-013-0470-6
  24. Park JM, Shin Sh, Kang CS, Kim KH, Cho KM, Choi JS, Kim HM, Park JC. Fungicide effects in vitro and in field trials on Fusarium head blight of wheat. Res Plant Dis 2012;18:194-200. https://doi.org/10.5423/RPD.2012.18.3.194