DOI QR코드

DOI QR Code

Electromagnetic design and optimization of the multi-segment dielectric-loaded accelerating tube using genetic algorithm

  • M. Nikbakht (Department of Energy Engineering and Physics, Amirkabir University of Technology) ;
  • H. Afarideh (Department of Energy Engineering and Physics, Amirkabir University of Technology) ;
  • M. Ghergherehchi (Department of Electrical & Computer Engineering, Sungkyunkwan University)
  • Received : 2021.08.07
  • Accepted : 2022.06.13
  • Published : 2022.12.25

Abstract

A low-energy dielectric loaded accelerator with a non-uniform, multi-segment structure is studied and optimized. So far, no analytical solution is provided for such structures. Also, due to the existing nonlinear behavior and a large number of geometric parameters, the problem of numerical optimizations is complex. For this reason, a method is presented to design and optimize such structures using the Genetic Algorithm (GA). Moreover, the GA output results are compared with Trust Region (TR) and Nelder-Mead Simplex (NMS) methods. Comparative results show that the GA is more efficient in achieving optimization goals and also has a higher speed than the two other methods. Finally, an optimized accelerating tube is integrated into a proper coupler. Then, the accelerator is simulated for full electromagnetic investigations using the CST suite of codes. This design leads to a structure with a power of about 80 kW in the X-band, which delivers electrons to the output energy in the range of 300-459 kV. The length and outer diameter of the accelerating tube obtained are 10 cm and 1 cm, respectively.

Keywords

References

  1. R. Harvie, A proposed new form of dielectric-loaded wave-guide for linear electron accelerators, Nature 162 (1948), 890-890. https://doi.org/10.1038/162890a0
  2. G.T. Flesher, G.I. Cohn, Dielectric loading for waveguide linear accelerators, Trans. American Inst. Electric. Eng. 70 (1) (1951) 887-893. https://doi.org/10.1109/T-AIEE.1951.5060496
  3. R.B.R. Shersby-Harvie, Discussions from Abroad Dielectric loading for waveguide linear accelerators, Trans. American Inst. Electric. Eng. 70 (2) (1951) 2136-2137. https://doi.org/10.1109/T-AIEE.1951.5060686
  4. R.B.R. Shersby-Harvie, L.B. Mullett, W. Walkinshaw, J.S. Bell, B.G. Loach, A theoretical and experimental investigation of anisotropic-dielectric-loaded linear electron accelerators, Proc. IEEE Part B: Radio and Electronic Engineering 104 (15) (1957) 273-290. https://doi.org/10.1049/pi-b-1.1957.0152
  5. R.B.R. Shersby-Harvie, L.B. Mullett, W. Walkinshaw, J.S. Bell, B.G. Loach, A dielectric-loaded accelerator, J. Inst. Eng. Electron. 3 (27) (1957) 167-169.
  6. X. Lu, et al., Advanced RF Structures for Wakefield Acceleration and High-Gradient Research, 2022.
  7. T.B. Zhang, T.C. Marshall, M.A. LaPointe, J.L. Hirshfield, A. Ron, Microwave inverse Cerenkov accelerator, Phys. Rev. 54 (2) (1996) 1918.
  8. W. Gai, A.D. Kanareykin, A.L. Kustov, J. Simpson, Numerical simulations of intense charged-particle beam propagation in a dielectric wake-field accelerator, Phys. Rev. 55 (3) (1997) 3481.
  9. P. Schoessow, M. Conde, W. Gai, R. Konecny, J. Power, and J. Simpson, "High gradient dielectric wakefield device measurements at the Argonne Wakefield Accelerator," in Particle Accelerator Conference, 1997. Proceedings of the 1997, 1997, vol. 1, pp. 639-641 vol.vol. 1.
  10. J.G. Power, M.E. Conde, W. Gai, R. Konecny, P. Schoessow, A.D. Kanareykin, Measurements of the longitudinal wakefields in a multimode, dielectric wakefield accelerator driven by a train of electron bunches, Phys. Rev. Spec. Top. Accel. Beams 3 (10) (2000), 101302.
  11. L. Xiao, W. Gai, X. Sun, Field analysis of a dielectric-loaded rectangular waveguide accelerating structure, Phys. Rev. 65 (1) (2001) 16505.
  12. D. Satoh, M. Yoshida, N. Hayashizaki, Dielectric assist accelerating structure, Phys. Rev. Acceler. Beam. 19 (1) (2016) 11302.
  13. C. Jing, W.M. Liu, W. Gai, J.G. Power, T. Wong, Mode analysis of a multilayered dielectric-loaded accelerating structure, Nucl. Instrum. Methods Phys. Res., Sect. A 539 (3) (2005) 445-454. https://doi.org/10.1016/j.nima.2004.10.030
  14. C. Jing, et al., Observation of enhanced transformer ratio in collinear wakefield acceleration, Phys. Rev. Lett. 98 (14) (2007), 144801.
  15. A.M. Altmark, A.D. Kanareykin, Decreasing power losses in multilayer dielectric-loaded accelerating structures, Tech. Phys. Lett. 34 (2) (2008) 174-176.
  16. C. Jing, et al., Development of a dual-layered dielectric-loaded accelerating structure, Nucl. Instrum. Methods Phys. Res., Sect. A 594 (2) (2008) 132-139. https://doi.org/10.1016/j.nima.2008.06.037
  17. C. Jing, et al., Experimental demonstration of wakefield acceleration in a tunable dielectric loaded accelerating structure, Phys. Rev. Lett. 106 (16) (2011), 164802.
  18. P. Zou, W. Gai, R. Konecny, X. Sun, T. Wong, A. Kanareykin, Construction and testing of an 11.4 GHz dielectric structure based traveling wave accelerator, Rev. Sci. Instrum. 71 (6) (2000) 2301-2304. https://doi.org/10.1063/1.1150446
  19. P. Zou, X-Band Dielectric Loaded RF Driven Accelerator Structures: Theoretical and Experimental, Ph.D., Electrical engineering, Illinois Institute of Technology, Ann Arbor, United States, 2001, 3027133.
  20. W. Liu, C. Jing, W. Gai, R. Konecny, J.G. Power, New RF design for 11.4 GHz dielectric loaded accelerator, in: Proceedings of the 2003 Particle Accelerator Conference, vol. 3, 2003, pp. 1810-1812.
  21. C. Jing, Experimental Study of X-Band Dielectric-Loaded Accelerating Structures, 3171990, Electrical engineering, Illinois Institute of Technology, Ann Arbor, United States, 2005. Ph.D. Thesis.
  22. C. Jing, W. Gai, J.G. Power, R. Konecny, S.H. Gold, High power RF tests on X-band dielectric-loaded accelerating structures, Plasma Science, IEEE Transactions on 33 (4) (2005) 1155-1160. https://doi.org/10.1109/TPS.2005.851957
  23. C. Jing, J.G. Power, R. Konecny, W. Gai, S.H. Gold, A.K. Kinkead, Progress on high power tests of dielectric-loaded accelerating structures, in: Proceedings of the 2005 Particle Accelerator Conference, 2005, pp. 1566-1568.
  24. C. Jing, et al., Progress toward externally powered X-band dielectric-loaded accelerating structures, IEEE Trans. Plasma Sci. 38 (6) (2010) 1354-1360. https://doi.org/10.1109/TPS.2009.2036921
  25. Beijing M. Zhou, S. J. N. D. I. P. Sun, Genetic Algorithms: Theory and Applications, vol. 6, 1999.
  26. K. Deb, Multi-objective Optimization Using Evolutionary Algorithms, John Wiley and Sons, 2001.
  27. A. Hofler, et al., Innovative Applications of Genetic Algorithms to Problems in Accelerator Physics, vol. 16, 2013, p. 10101, 1.
  28. A.S. Hofler, Genetic Algorithms and Their Applications in Accelerator Physics, Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA, 2013.
  29. S. Shin, J.J.G. Chai, Optimization of the RF Cavity of the Medical Purpose Electron Linac by Using Genetic Algorithm, vol. 9200, 2014, p. 9250.
  30. H. Yuzhe, Y. Jinsheng, L. Yongtao, The structure optimized of X-band standing wave accelerator based on genetic algorithm, in: 2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA), 2017, pp. 513-517.
  31. T. Luo, et al., RF Design of APEX2 Two-Cell Continuous-Wave Normal Conducting Photoelectron Gun Cavity Based on Multi-Objective Genetic Algorithm, vol. 940, 2019, pp. 12-18.
  32. P. H. Williams, D. Angal-Kalinin, D. J. Dunning, J. K. Jones, and N. R. Thompson, "Recirculating linac free-electron laser driver," Phys. Rev. Spec. Top. Accel. Beams, vol. 14, no. 5, p. 50704, 05/17/2011.
  33. X. Huang, J. Corbett, J. Safranek, J. Wu, An algorithm for online optimization of accelerators, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 726 (2013) 77-83, 2013/10/21/. https://doi.org/10.1016/j.nima.2013.05.046
  34. A.-K.S.O. Hassan, H.L. Abdel-Malek, A.S.A. Mohamed, T.M. Abuelfadl, A.E. Elqenawy, RF cavity design exploiting a new derivative-free trust region optimization approach, J. Adv. Res. 6 (6) (2015) 915-924, 2015/11/01/. https://doi.org/10.1016/j.jare.2014.08.009
  35. H. Tran, et al., Optimization of klystron designs using deterministic sampling methods, IEEE Trans. Electron. Dev. 62 (3) (2015) 1032-1036. https://doi.org/10.1109/TED.2015.2394479
  36. N. Neveu, J. Larson, J.G. Power, L. Spentzouris, Photoinjector optimization using a derivative-free, model-based trust-region algorithm for the Argonne Wakefield Accelerator, J. Phys. Conf. 874 (2017) 12062, 2017/07.
  37. M1976, Available: https://www.njr.com/micro/download/datasheet/rader/_govement/DS-M1976/_02E.pdf.
  38. Technical Ceramics, Available: http://www.trans-techinc.com/documents/Basic/_Dielectric/_Materials/_203830A.pdf.
  39. C.T.M. Chang, J.W. Dawson, Propagation of electromagnetic waves in a partially dielectric filled circular waveguide, J. Appl. Phys. 41 (11) (1970) 4493-4500. https://doi.org/10.1063/1.1658487
  40. CST Studio Suite Electromagnetic field simulation software, Available: https://www.3ds.com/products-services/simulia/products/cst-studio-suite/, 2022.
  41. C. Jing, et al., Observation of multipactor suppression in a dielectric-loaded accelerating structure using an applied axial magnetic field, Appl. Phys. Lett. 103 (21) (2013), 213503.
  42. C. Jing, S.H. Gold, R. Fischer, W. Gai, Complete multipactor suppression in an X-band dielectric-loaded accelerating structure, Appl. Phys. Lett. 108 (19) (2016), 193501.