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The aim of this work is to develop the fractional Bateman equations, which can model memory effects in
successive isotopes transformations. Such memory effects have been previously reported in the alpha decay,
which exhibits a non-Markovian behavior. Since there are radioactive decay series with consecutive alpha
decays, it is convenient to include the mentioned memory effects, developing the fractional Bateman Equa-
tions, which can reproduce the standard ones when the fractional order is equal to one. The proposed frac-
tional model preserves the mathematical shape and the symmetry of the standard equations, being the only
difference the presence of the Mittag-Leffler function, instead of the exponential one. This last is a very
important result, because allows the implementation of the proposed fractional model in burnup and acti-
vation codes in a straightforward way. Numerical experiments show that the proposed equations predict high
decay rates for small time values, in comparison with the standard equations, which have high decay rates for
large times. This work represents a novelty approach to the theory of successive transformations, and opens
the possibility to study properties of the Bateman equation from a fractional approach.
© 2021 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the
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1. Introduction X1(0)£0
Xi(0)=0,2<i<n (4)
In several nuclear engineering phenomena, certain isotopes A=A Vi,jwith 1 <i,j < nandi#j
transform into other ones, which in turn undergo similar trans-

formations in a successive way, which can be represented as: Such solution can be written as:

exp( —

A An-

X Bxy B M, (1) Xl(O)kHA"lZ]JH 4 —* ©)
where X; and 4;, with 1 <i < n, denote the concentration and the Jj*i

decay constant of the isotope i, respectively. The mass balance

equation for an element in (1) can be set as: As it can be observed, the radioactive decay law plays an

important role in the process of building the Bateman equations,
because it allows to write the gain and the loss functions in the
mass balance equation given in (2). It has been concluded that such
law does not exhibit memory effects [3], and therefore the Bateman

dx;(t)
de

/11 1X1 l() Aixi(t) (2)

Fori =1, there is no contribution from other isotopes and Eq. (2)
is reduced to the radioactive decay law [1]:

dX; _
dt

Bateman [2] found a solution for Eq. (2) using the Laplace
transform and considering the following initial conditions:

— 4iXi(t) (3)
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equations also lack of them. Nevertheless, some authors [4] sug-
gested the opposite for the alpha decay process, considering that
there are memory effects in such phenomenon, which can be
simulate through fractional calculus and reformulating Eq. (3) as:

EXi(t) = — 4iXi(t) (6)
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where D¢ is the Caputo fractional derivative of order o, with0 < < 1.
This last equation is known as fractional radioactive decay law. Since
there are decay chains who contain multiple and consecutive alpha
decays, it is convenient to build a more general model that includes
memory effects in such schemes. Following the Calik's et al. procedure
[4], such effects can be introduced in the mass balance equations
through fractional derivatives, leading to the formulation of the
fractional Bateman equations (FBE), which are developed in the pre-
sent paper.

Therefore, the aim of this work is extending the mentioned
findings about the memory effects in alpha decay, to the case of
successive transformations, focusing in providing a mathematical
framework to build the Bateman equations from a fractional
approach. Since there is a particular interest in developing analytic
solutions for this fractional model, in the present work we use the
Caputo's derivative definition, because it allows using initial con-
ditions of the problems in the standard way [5].

The proposed method has two important advantages: firstly, it
allows to develop analytic solutions in an analogous way in which
the original Bateman equations are solved. On the other hand, except
for the exponential function which is replaced by the Mittag-Leffler
one, the developed solutions have an identical shape and symmetry
of the integer's model. This last is very convenient from an algo-
rithmic point of view, because it allows to implement the proposed
model in burnup and activations codes in a straightforward way.

Two analytical solutions are proposed in the present work to the
developed FBE: one considering that all the decay constants are
different, and other allowing that some of these parameters are
repeated. Numerical experiments were carried out using two
different cases: a radioactive decay series who contains several
consecutive alpha decays, given by 238 Py — 234U —230Th — 226Rg, and
a hypothetical decay chain where there are repeated decay constants.
Results show that FBE can reproduce the standard Bateman equations
when the fractional order is equal to 1, and that such model exhibits
high decay rates for small times, in comparison with the standard
approach.

This paper is structured as follows: Section 2 contains the pre-
liminaries of fractional calculus. The fractional Bateman equations
with a single fractional order, as well as its solutions are developed
in Section 3. Section 4 contains the numerical analysis, and the
conclusions are given in Section 5.

2. Preliminaries
2.1. Fractional Calculus and the Caputo's derivative definition

In fractional calculus the order of the derivatives is generalized,
allowing to use positive real numbers. This mathematical tool has a
wide range of applications that include the modelling of biological
and economical phenomena [6,7] until neurological, epidemic and
non-autonomous systems process [8—10]. There are at least 15
definitions of fractional derivatives that are reported in literature
[11], but in the present work the Caputo's definition will be adopted
because the Laplace transform method can be extended in a
straightforward way to it [12]. This last is convenient to develop
analytic solutions as it will be showed in Section 3. The Caputo
fractional derivative of order « is defined as [13,14]:

t

[ ne o mar,

0

1

PO = Ty

(7)

with k—1<a<k where I'(-) is the Gamma function. In some con-
texts, the « number can be understood as a positive rational non-

276

Nuclear Engineering and Technology 54 (2022) 275—282

integer number or a fraction, being this the reason that such
mathematical tool takes the adjective of “fractional”.

2.2. The Laplace transform method

Among the mathematical methods that have been used to solve
differential fractional equations, one of the most important is the
Laplace transform method [12], which as in the standard case, re-
duces the fractional differential equations to a set of algebraic
equations, through the following integral transform [12]:

k=1
Z{DE (1)} =sF(s) — > _ s 1 f(0)

=0

(8)

Kexue and Jigen [15] provided the sufficient conditions to
guarantee that fractional differential equations with constant co-
efficients can be solved through the Laplace method. Essentially,
such conditions are related to the continuity of the functions as well
as their property of being bounded, which will be assumed in the
present work.

2.3. The Mittag-Leffler function

Introduced at the beginning of the last century, the Mittag-
Leffler function can be considered as a generalization of the natu-
ral exponential one, and due to its importance, it has been called
the “Queen of Fractional Calculus” [16,17]. Its 2-parameter version,
denoted by 2PMLEF, is defined as [12]:

o0
Eug(2) =
k=0

zk

L(ka+ B)’ ©)
a, 8, z € C, which is convergent always that Re(a), Re(f) >0 [18].
When the Laplace method is used, the following relationship is
crucial to solve several differential fractional systems [12]:

plseh

W7 (10)

Z{er SR eae) | =

with Re(s) >|A|5, peN and where E‘% represents the p-integer
derivative of the 2PMLF.

3. Fractional Bateman Equation

In certain physical systems, the properties of a given state depend
not only of the present variables who described it, but also in the
behavior of such variables on past states. Such property of the system
is known as memory effect [19], and for the case where the states are
described as functions of time t, this effect means that the system will
depend on the history of the process at time, i.e., of states with 7 <t.

At first it could appear that all phenomena exhibit memory ef-
fects, but there are certain systems who cannot be described in
such way. For the case of systems whose states depend on time, the
absence of memory effects can be described as if they “seem not to
‘age” [20]. Therefore, in a memoryless process an item appears to
‘forget’ how long it has survived, which from a probability point of
view can be understood as if the probability of the remained sur-
vival does not depend on past time. More generally, it is possible to
conclude that, if a random variable X exhibits a memoryless
behavior on a subset S, then it has the Markov property [20], which
mathematically is described as:

P(X>a+bX>a) =P(X>b), (11)
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where Va,b € S. Eq. (11) has two important implications for the
present work. Firstly, it is possible to corroborate that the radio-
active decay process fulfills such property, which follows from the
fact that Eq. (3) can be deduced from Eq. (11) [21]. On the other
hand, applying the conditional probability formula to Eq. (11), the
following equation is obtained:

P(X >a-+b)=P(X > a)P(X > b)

which admits as unique solution a probability function given by
P(X >t) = exp( — at), where « is a constant [22]. Therefore, it is
possible to conclude from a mathematical point of view, that the
memoryless property appears in the radioactive decay law in the
form of the exponential function. This last conclusion is very
important, because there are some findings that suggest that there
are memory effects on alpha decay [4], and therefore such phe-
nomenon not necessarily have an exponential function in its
mathematical expression.

As it is known, it is possible to compute the alpha decay half-life
through theoretical models. Nevertheless, there are inconsistencies
between the theoretical values and the experimental ones, being
necessary to develop additional models to correct them. In one of
these models, the cluster one [23], the decay constant is defined as
a product of three terms: the preformation probability, the assault
frequency, and the barrier penetrability. While the last two factors
can be computed through theoretical methods, the first one is
defined as a ratio between experimental and computed values for
the half-life. In such context, a fractional alpha decay law was
developed, in order to compute the decay constant without the
need to use one of the factors: the preformation probability [4]. This
was a very novelty and a useful procedure, which allows finding
alpha decay half-lives whose values were equal to experimental
ones. Therefore, it was concluded that the mentioned discrepancies
between the experimental and the computed values, arise as result
that the alpha decay equations, building with the exponential decay
law, do not take into account the non-Markovian feature or the
memory effects [4]. In such context, the present work extends that
conclusion, but instead of computing decay constants, it models the
isotopes concentration in successive transformations, building mass
balance relationships, i.e., the Bateman equations.

3.1. Fractional radioactive decay law
The fractional radioactive decay law is given by [4]:

WX (t) = —2°X(1), (12)

with 0 <a < 1. Applying Eq. (8) on both sides, it follows that:

s* X(s) — s*71X(0) = —A“ k(s), (13)
where x = Z{X(t)}. The last equation can be rewritten as:

X(s) = X(0) > 14
X6 =XO) G ()

and according to Eq. (10), the solution for the last system is given
by:
X(t)

=X(0)Eq,1(~A"t) (15)

Starting from Eqs. (12) and (15), it is possible to develop a
“fractional” mass balance equation of the problem of successive
transformations given in (1), which can be solved with the Laplace
transform method. Two different cases will be considered for such
task:
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1) Case 1: all decay constants are different,
2) Case 2: there are repeated decay constants

3.2. Case 1: different decay constants

Using a single fractional order ¢, Eq. (2) has the following
equivalent fractional formulation:
DEXi(t) = 21X 1(6) = A Xi(©), (16)
with 1 <i<n, 35Xo = 0. Applying Eq. (8), such equation can be
written as:

S Xi(s) — s 1X5(0) = ALq Xi_q (5) — A Xi(9) (17)
with X; = Z{X;(t)}. Considering the initial conditions given by
Xi(t=0)=0,i=2,3,...,n, Eq. (17) can be written in an expanded
way as:
- 5% 1X,(0)
X1(8) = —/"
1) s+ 2y
- 1%
X(s) =
2(5) s* 425
fofs) AR
s* Ay

It is possible to observe in the last system, that the solution to
the term i can be obtained through the solution of the termi— 1.
Therefore, after multiple replacements, it is possible to write:

a a] 1
HX kl_[1<sa+lk)

Using partial fraction decomposition, the right product can be
expressed as a sum:

(18)

n n C
=5k
,g<s + ) k=1 (s“+lﬁ)
with ¢, = ﬁ - (19)

)

Through the last steps, the solution of the system given in (16) is
reduced to find the following inverse Laplace transform:

a—]
H g ch 1{5”}

which, according to Egs. (10) and (19) is equal to:

k=j

F = al(_’wta)
XE(t) =X (0 kaz H% (20)
k=1 =1 j=1 (X]‘?‘—K?‘)
j#i

where the upper index F is used to distinguish such fractional so-
lution of the standard one, that was given in Eq. (5). Eq. (20) will be
called the Fractional Bateman Equation (FBE), which has an iden-
tical shape that Eq. (5). In fact, their only differences are the pres-
ence of the 2PMLF, instead of the exponential function, as well as
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the fractional exponent in the decay constants and on the time
variable. Also, it is possible to observe that the FBE can reproduce
the standard Bateman equation, in fact:

n—1
oy F oy H Z 1(—At

n n
E11(—
1 =T =

Jj#i

n
11
j=1
Jj#i

n—1 n

=X10) [T 4>

k=1 i=1

exp(—Ait)

= X (t
(4 = 4) (©

where it was used that E; ; (x) = exp(x) in the last step [5]. Therefore,
the FBE is a more general solution to the problem of successive
transformations. As in the case of the standard Bateman equation, the
FBE is also symmetrical, if it is considered as a function of the decay
constants arguments. In other words, the following property is valid:

Fya qa o
XI’I( ]7127...7 l

o
Am7 (A

A8

(21)
Xa (4423,

This last equation implies that the function has the same value,
independently of the order in which the isotopes that are prior to the
isotope n appear (considering the same initial concentration). Such
property is very important in the integer order case, to overcome the
numerical difficulties related to the differences between decay
constants of short-lived nuclides [24], and it is advantageous that the
FBE also has such property. Finally, the similarities between the
shape of the FBE with the standard Bateman Equation, imply that an
algorithm that is used to solve the Bateman equation can be
extended, in a straightforward way, to solve the fractional model,
being only necessary to include the mentioned differences.

e B5)

3.3. Case 2: repeated decay constants

It was assumed that all the decay constants were different when
Eq. (5) was obtained. It is possible to eliminate such limitation,
removing the third line in (4), which generates a more general
solution to the Bateman equations. For such task it is necessary to
assume that, of the total n decay constants, only m are different.
Such decay constants will be denoted by 4;,1 < j < n, and following
a similar procedure to the one given in the last section, the Bateman
solution that admits repeated decay constants is given by [25]:

A,Z

J=1

—_

nf T

Bjrj
h=1
du
— lim —
uls—>—A;dst

XR(t) =

’.:1

1 P (= At
_ )l

(ri=h) (h

e 1
s

[
_ =

22
where B;,_, = (22)

c#j

In Eq. (22), the super index R is used to denote “repeated”. In the
present section, a similar formula will be developed to the frac-
tional case. Starting from Eq. (18), where no assumptions about the
decay constant have been carried-out, it is possible to group the
terms that have the same decay constant in the following way:

Xn(s) =X1(0) (23)

where r; — 1 represents the number of times that the decay
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constant A; is repeated. Unlike the Case = 1, Eq. (23) cannot be
expresses in simple-root partial fractions decomposition. In this
case it is necessary to use the following identity [25]:

L Ay ()
] N\ 4 h
Jj=1 (sa+Aj> j=1 h=1 (sa+qu)
where
Ajr—u
v [ 1

(24)

=— 1l
mRLLNF Tl | e
c#j

Therefore, the solution of (24) can be found through the
following expression:

m soz—l

—1
5§00 {0

Using (10), it follows that:

7} =x0 H: %

A (— agen)

(h—1)_¢1
(h—1)!

n

g

i}

D> Ay
h=1

R (¢ <
X

(e <

(25)

where the upper index, FR, is used to denote “Fractional Repeated”.
It is possible to proof that Eq. (25) is reduced to Eq. (22), when the
fractional order is equal to 1. For such task, it is necessary to observe
the following relationships, which can be proved using the deriv-
ative chain rule:

dh—]

o —th-1 (ext)7
X

(€)
(26)

dh—l

dxh—]

Using them, it is possible to conclude that XfR(t) and X, have
the same shape, as in the Case 1, being the unique difference that
the exponential function was replaced by the Mittag-Leffler one.
This has a very important meaning related to Eq. (11). As it was
discussed before, the memoryless property of the phenomenon
was contained in the exponential function. Nevertheless, if memory
effects are considered, it would expect that such function will be
replaced by a generalized one, which is precisely the 2PLMF.
Therefore, as in the past case, this similarity allows to use an al-
gorithm that originally was designed to solve the Bateman equa-
tions with repeated decay constants, to solve the equivalent
fractional model. On the other hand, the p derivative of E, g(z) can
be computed using the following relationship [26]:

Z (p + k)1z
KT(a(p 1+ k) + B)

(Eua (xt%)) = £ DEC Y (et

dr

p+1
dzp Eup(z

= pEaap+{3( );

(27)

where Ezﬁ(z) represents the 3-Parameter Mittag-Leffler Function

(3PMLF) [27,28], which is a further generalization of Eq. (9). Ac-
cording to Fernandez and Husain [29], such expression is locally
uniformly convergent for any zeC, and Re(«) > 0.

An important aspect in the developing of fractional models is
related to determine a proper value of ¢, i.e., the fractional order. At
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the present stage of the research, such task will not be addressed,
limiting the present study to the mathematical and numerical
framework of the FBE, being the experimental part a matter of a
future work. It is worth mentioning that the most common decay
schemes that appear in nuclear engineering and activation prob-
lems were considered in the present work, which are known as
linear chains and for which there are analytic solutions. Never-
theless, there are more complicated structures known as cyclic
chains, for which such analytic solutions do not exist, being
necessary to approximate them using numerical methods [30].
Fortunately, there is a continuous progress in the numerical tech-
niques to solve fractional differential equations, and particularly in
the ones that are based in the Caputo's derivative [31—33]. On the
other hand, there also have been several developments in the
generalization of the Mittag-Leffler function [34,35], which can
help to express the developed equations in a different way,
reducing their complexity as it was the case of the derivatives in Eq.
(27), which was reduced using the 3PMLF. Nevertheless, such task
will be addressed in future stages of this research.

4. Numerical experiments

The calculations were performed on a 3.5 GHz Intel i7 processor,
6700 HQ, under a 64-bit Windows operating system, using the
Python 3.8 programming language. The Decimal and the SciPy li-
braries were used, the first one to guarantee a precision of 20 digits
and the second one for computing the Gamma function. For the
case of the Mittag-Leffler function and its derivatives, a direct
programming of Eqs. (9) and (27) was carried-out, as it is showed in
the Algorithm 1 in Appendix A, where the infinite in the upper limit
was replaced by a value of 1000. Even when such number repre-
sents a huge computational-time, it is adequate for the moment
because it provides a proper precision with the purpose to make
adequate comparisons.

4.1. Case 1: different decay constants

Since the mentioned findings about the memory effects are
related only to alpha decay, it is adequate to consider a chain where
only this type of decay appears. For this case, a range of time from 1
to 70,000 days was used, because this is a typical range in nuclear
chronometry [36]. Therefore, for Case 1, the following scheme is
proposed:

}\238 }\234 }‘230 )‘226
238Pu S 234U ey 230Th S 226Ra Ra (28)

The corresponding values of the decay constants are listed in
Table 1. For comparative purposes, a normalized unitless initial
concentration equal to 1 will be considered for 23®Pu . The results

for the four isotopes are given in Fig. 1. For 238Pu, the Bateman
equation is reduced to

X1 (t) = Xorsp, (0)xp ((— Apyt) = exp( — ump,t)
and for the fractional model:

XE(6) =Xosopy (0)Eu 1 (= op, t*) =Eut (= 20p, t*)

Then, the first comparison is reduced to compare the expo-
nential function with the Mittag-Leffler one. As it can be observed
in Fig. 1, in the fractional model the reduction in the concentration
is faster than the standard case, at least for the first 3000 days.
Nevertheless, from a certain point the tendence is reverted, and the
reduction is slower than, which is the reason that there is a crossing
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Table 1

Decay constants of the isotopes belonging to (28).
A (seconds)~!
238y, 25062204 x 10-10
234, 8.9529747 x 10~ 14
230y, 2.9158334 x 10~ 13
42264, 1.3737220 x 10-1!

between the graphs. On the other hand, the growth in the con-
centration for 234U is faster than in the standard case, at least for
the first 3000 days. This coincides with the behavior that was

observed for the preceding isotope, 23 Pu , whose decay was faster.

Since the decay of this last isotope led to the creation of 234U, it is
expected a greater concentration.

Starting from 3000 days, the tendence is reverted, which as it
was discussed before, is perfectly coherent with the behavior of
the Mittag-Leffler function. For the graphs of 23°Th and ??%Ra, it is
possible to observe significative differences between the frac-
tional model and the standard Bateman one. Such differences can
be explained in terms of subtractions and products between decay
constants, which are more dominant that in the past isotopes.
In order to exemplified such behavior, the values of X3¢, (t1000 =

1000 days) and Xgao,,, (1000 days) will be compared. Firstly, it will

be considered the following expression that appears in the stan-
dard Bateman equations given in (5):

3 A tione) | 1-5603364615 x 1019, i=1 ,
H ~{ 1.97544990700 x 1022, i=2 (seconds)
— %) —1.9770098728 x 10%2, i=3

j#i
(29)

where 11, A, and A3 correspond to the first three isotopes shown in
(28). In Eq. (5), the expression (29) is multiplied by the factor
M Ay = 2.2438142 x 10-23 seconds? , after which it follows that
X230, (t1000) =8.314769492319 x 10-8. In the fractional case, all
the last terms depend on the fractional order, but it is more noto-
rious such dependence in the factor A{-15 . In order to show that,
the following ratios will be defined:

R(a) =
23: f[Em — X' tfo00) . 23: ﬁ exp( “1000)
i=1 j=1 ( > i=1 j= ’)
i i
P(a) = 1338, " X234,
2238, 234,

X534, (t1000)
X234, (t1000)’

It follows that R(a)-P(a) = L(a). Fig. 2 shows the behavior of
such ratios as a function of the fractional order. As it can be
observed, the ratio P(«) decreases at a higher rate than R(«), which
implies that for small fractional orders, the fractional solution will
exceed the standard solution in a greater order of magnitude.
Therefore, unlike the past two cases, where the Mittag-Leffler
function has an important effect on the solution, leading to
“crosses” in the graph, in this case this effect is overshadowed and
surpassed by the effect of R(a) and P(«).

(30)
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20000 40000 60000
— a=1

— a=0.99
— a=0.95

Fig. 1. Normalized Concentration vs time, for the isotopes given in (28).

4.2. Case 2: repeated decay constants

There are two situations where repeated decay constants appear
in (1): when there are repeated isotopes in a chain, and when there
are two different isotopes with the same decay constant. The first
situation is related to the concept of cyclic chains [30], for example:

X? (TE)/)X?+1 <H)X§H2 (n_vz’)xéprg

XA+4

1) araB aiaB
= X e XH X

Sx8

The second situation, where two different isotopes have the
same value for their decay constants, is common for half-lives that
are estimated with theoretical considerations [37]. As it was
mentioned before, it is adequate to carry-out numerical experi-
ments using decay chains where only the alpha decay appears.
Nevertheless, it is not possible to propose a real decay chain whose
fulfills some of the mentioned conditions. Nonetheless, from a
mathematical point of view, it is useful to propose a hypothetical
decay scheme to carry-out comparisons, which will be based in the
case that was studied by Dreher [37]. In the present work, such
scheme will be reduced to four different isotopes, with only two
different decay constants:

X 358X 35X, 53 (31)

The initial concentration for the first isotope will be set equal to
6.023 x 1023 atoms, and the values of the proposed decay con-
stants will be given by A; = A, = In(2)/2 seconds~!, and A3 = 4 =
In(2)/3 seconds~!. A time interval from 0.1 to 10 s will be used,
which is convenient to appreciate the behavior of the solutions. The

20000 40000 60000

Time (s)

— a=0.9
— a=0.85
— a=0.8

a=0.75
— a=0.7

Ratios defined in (30)

— R(a)
— P(a)
— L)

Ratio
SJ

0.3 0.4 0.5 0.6

a

0.7 0.8 0.9

Fig. 2. Numerical Analysis of the ratios defined in (30).

standard and the fractional solutions for the first two isotopes in
(31) are lack of interest for comparative purposes, because for the
first case there are not repeated isotopes before the first position,
and for the second one the solution is very similar to the expo-
nential case. Therefore, only the concentration of the last two iso-
topes will be studied. The results of such isotopes are given in Fig. 3.

For the isotope X3, the concentration of the fractional case is
greater than the integer order one, for the time interval given be-
tween 0.1 s and 1 s. Such behavior is very similar to the one that was
described for 224U in Fig. 1. Unlike the isotopes of >°Th and 2%®Raq,
in this case there are not problems about the magnitude order of
the results, which can be explained considering that the decay
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Fig. 3. Concentration of the isotopes X3 and X4, given in (31).

constants do not differ significantly in the hypothetical decay chain.

For X4 there are two different decay constants in the associated
decay chain, each of them appearing two times. The behavior of the
graph is similar to the ones that were described for Xs. It is possible
to observe that the point where the graphs are crossing is moved to
the right, which corresponds to the position where the isotope
appears in the chain given in (31). Essentially, it is possible to
observe that the fractional model can describe in a proper way the
behavior of the successive transformations, and as the value of the
fractional order tends to 1, the fractional model tends to the stan-
dard Bateman one.

5. Conclusions

The aim of this work was developed a more general formulation
of the Bateman equations, which was carried out in a satisfactory
way. This new approach considers the possibility of including
memory effects through the use of fractional calculus. Using the
Laplace transform method, it was possible to find two solutions to
the developed fractional model: one considering that all the decay
constants were different, and other one where repeated decay
constants appear. As a notable result, the developed equations have
the same mathematical shape that the standard ones, with only
two differences: the proposed model contain the Mittag-Leffler
function and its derivatives, instead of the exponential one, and
that the decay constant and time variable have the fractional order
as an exponent.

Due to the mentioned similarity between the standard and the
fractional model, it is possible to extend several properties of the
original Bateman equation to the fractional one. Through numerical
experiments it was possible to conclude that the loss rate in the
fractional model is faster than the standard one, at least for a first
time's interval, then such tendence is reverted for large times.
Finally, the results that were obtained from the fractional models
show a huge potential for describing memory effects, which were
traditionally ignored in the decay process models, representing an
effective way to generalize the Bateman equations for successive
transformations, as well as to study their properties from a frac-
tional approach.
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Appendix A

A.1 Pseudo code for the 2-parameter Mittag-Leffler function

A.1 Pseudo code for the
2-Parameter Mittag-Leffler Function

INPUT z, «, (3, approx.
OUTPUT E, 4(2)

c=0

FORi =0, 1, 2, ..., approx :
c=c+Z/T(a+-i+B)
RETURN ¢

A b W=

A.2 Algorithm for fractional Bateman Equation

A.2 Algorithm for the fractional Bateman

Equation

1 INPUT n, ¢, Xo, a,
vec_decay = [A1,42,...,An]

2 OUTPUT X&(t)

3 p=1,s=01=1

4 IFn+1:

5 FORi =0,1,..,(n—1):

6 p =p*A

7 ELSE

8 p=1

9 FORk=1,2, ... n

10 FORj=1, 2, ..., n AND j=k:

11 I=1(1/(% = %)

g s =5+E,g(— Apt*)-l

X3 (t) =Xo-p-s
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A.3 Explicit expressions for equations (22) and (25) for case n = 3
and n = 4

For casen = 3:
R th-1
X3(0) =X1(0)47Y > Bjy () X mexp( — Ajt)
j=1 h=1 ’
Since r; =2, rp, = 1, it follows that:
X3(t) = X1(0)1
x (31,27(1) exp(— At) + By (o) t exp( — Aqt)
+B21-(0) exp( — A2f))
Using Eq. (24), the coefficients By 31y, By 2—(0) and B 1_(g) and
reducing these terms, leads to:
X3(6) = X1 (0)1
(A.1)

exp(— At)  texp(— At) exp(— Axt)
- ;2 P B 2
(A — A1) 2 =M (M —22)

Using the same procedure, it follows that:
Xa(£) = X1 (0)1 75

t(exp( — A1t) + exp( — At) B 2exp( — A t) —exp( — Azt)
(o —4)? (A2 —29)°

(A2)

Similarly, for the fractional case given in equation (25), under an
equivalent procedure it follows:

X§(6)=X(0)(23)?

Eot (—386%) OB,y (—I§1%) Eyq(—J5t%) (A3)
57 A (§-29)

and:
X§(6)=X1(0)25 (23)°

t* (Euq (— 56 +E, 1 (-35¢%) ) SEat (—141%) ~Eua (~251%)
(25-25)° 05-45)

(A4)
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