DOI QR코드

DOI QR Code

Thermally assisted IRSL and VSL measurements of display glass from mobile phones for retrospective dosimetry

  • Discher, Michael (Paris-Lodron-University of Salzburg, Department of Geography and Geology) ;
  • Kim, Hyoungtaek (Korea Atomic Energy Research Institute, Radiation Safety Management Division) ;
  • Lee, Jungil (Korea Atomic Energy Research Institute, Radiation Safety Management Division)
  • 투고 : 2021.04.15
  • 심사 : 2021.07.16
  • 발행 : 2022.02.25

초록

Investigations of retrospective dosimetry have shown that components of mobile phones are suitable as emergency dosimeters in case of radiological incidents. For physical dosimetry, components can be read out using optically stimulated luminescence (OSL), thermoluminescence (TL) and phototransferred thermoluminescence (PTTL) methods to determine the absorbed dose. This paper deals with a feasibility study of display glass from modern mobile phones that are measured by thermally assisted (Ta) optically stimulated luminescence. Violet (VSL, 405 nm) and infrared (IRSL, 850 nm) LEDs were used for optical stimulation and two protocols (Ta-VSL and Ta-IRSL) were tested. The aim was to systematically investigate the luminescence properties, compare the results to blue stimulated Ta-BSL protocol (458 nm) and to develop a robust measurement protocol for the usage as an emergency dosimeter after an incident with ionizing radiation. First, the native signals were measured to calculate the zero dose signal. Next, the reproducibility and dose response of the luminescence signals were analyzed. Finally, the signal stability was tested after the storage of irradiated samples at room temperature. In general, the developed Ta-IRSL and Ta-VSL protocols indicate usability, however, further research is needed to test the potential of a new protocol for physical retrospective dosimetry.

키워드

과제정보

The study was mainly carried out under the National Long- & Intermediate-Term Project of Nuclear Energy Development of Ministry of Science and ICT, Republic of Korea (No.2017M2A8A4015255) and the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONs) (No.1803014). The scientific cooperation is partially conducted in the framework of EPU (Eurasia-Pacific UNINET) network and partially funded by funds of the Federal Ministry of Education, Science and Research (BMBWF) Austria (project periods: 2020/2021).

참고문헌

  1. B.B. Williams, A.B. Flood, I. Salikhov, K. Kobayashi, R. Dong, K. Rychert, G. Du, W. Schreiber, H.M. Swartz, In vivo EPR tooth dosimetry for triage after a radiation event involving large populations Radiat, Environ. Biophys. 53 (2014) 335-346. https://doi.org/10.1007/s00411-014-0534-9
  2. F. Trompier, A. Romanyukha, R. Reyes, H. Vezin, F. Queinnec, D. Gourier, State of the art in nail dosimetry: free radicals identification and reaction mechanisms Radiat, Environ. Biophys. 53 (2014) 291-303. https://doi.org/10.1007/s00411-014-0512-2
  3. S.W.S. McKeever, S. Sholom, J.R. Chandler, Developments in the use of thermoluminescence and optically stimulated luminescence from mobile phones in emergency dosimetry Radiat, Prot. Dosim. 192 (2) (2020) 205-235. https://doi.org/10.1093/rpd/ncaa208
  4. I.K. Bailiff, S. Sholom, S.W.S. McKeever, Retrospective and emergency dosimetry in response to radiological incidents and nuclear mass-casualty events: a review Radiat, Meas 94 (2016) 83-139. https://doi.org/10.1016/j.radmeas.2016.09.004
  5. E.A. Ainsbury, E. Bakhanova, J.F. Barquinero, M. Brai, V. Chumak, V. Correcher, F. Darroudi, P. Fattibene, G. Gruel, I. Guclu, S. Horn, A. Jaworska, U. Kulka, C. Lindholm, D. Lloyd, A. Longo, M. Marrale, O. Monteiro Gil, U. Oestreicher, J. Pajic, B. Rakic, H. Romm, F. Trompier, I. Veronese, P. Voisin, A. Vral, C.A. Whitehouse, A. Wieser, C. Woda, A. Wojcik, K. Rothkamm, Review of retrospective dosimetry techniques for external ionising radiation exposures Radiat, Prot. Dosim. 147 (2011) 573-592. https://doi.org/10.1093/rpd/ncq499
  6. C. Bassinet, C. Woda, E. Bortolin, S. Della Monaca, P. Fattibene, M.C. Quattrini, B. Bulanek, D. Ekendahl, C.I. Burbidge, V. Cauwels, E. Kouroukla, T. Geber-Bergstrand, A. Mrozik, B. Marczewska, P. Bilski, S. Sholom, S.W.S. McKeever, R.W. Smith, I. Veronese, A. Galli, L. Panzeri, M. Martini, Retrospective radiation dosimetry using OSL of electronic components: results of an inter-laboratory comparison Radiat, Meas 71 (2014) 475-479. https://doi.org/10.1016/j.radmeas.2014.03.016
  7. D. Ekendahl, B. Bulanek, L. Judas, Comparative measurements of external radiation exposure using mobile phones, dental ceramic, household salt and conventional personal dosemeters Radiat, Meas 72 (2015) 60-65. https://doi.org/10.1016/j.radmeas.2014.11.015
  8. A. Mrozik, B. Marczewska, P. Bilski, W. Gieszczyk, Investigation of OSL signal of resistors from mobile phones for accidental dosimetry Radiat, Meas 71 (2014a) 466-470. https://doi.org/10.1016/j.radmeas.2014.05.004
  9. A.S. Pradhan, J.I. Lee, J.L. Kim, Use of OSL and TL of electronic components of portable devices for retrospective accident dosimetry Defect, Diffus. Forum 347 (2014) 229-245. https://doi.org/10.4028/www.scientific.net/ddf.347.229
  10. S. Sholom, S.W.S. McKeever, Emergency OSL dosimetry with commonplace materials Radiat, Meas 61 (2014) 33-51. https://doi.org/10.1016/j.radmeas.2013.12.008
  11. A. Pascu, S. Vasiliniuc, M. Zeciu-Dolha, A. Timar-Gabor, The potential of luminescence signals from electronic components for accident dosimetry Radiat, Meas 56 (2013) 384-388. https://doi.org/10.1016/j.radmeas.2013.03.013
  12. D. Ekendahl, L. Judas, Retrospective dosimetry with alumina substrate from electronic components Radiat, Prot. Dosim. 150 (2) (2012) 134-141. https://doi.org/10.1093/rpd/ncr380
  13. C. Woda, I. Fiedler, T. Spottl, On the use of OSL of chip card modules with molding for retrospective and accident dosimetry Radiat, Meas 47 (11-12) (2012) 1068-1073. https://doi.org/10.1016/j.radmeas.2012.08.012
  14. F. Trompier, C. Bassinet, S. Della Monaca, A. Romanyukha, R. Reyes, I. Clairand, Overview of physical and biophysical techniques for accident dosimetry Radiat, Prot. Dosim. 144 (1-4) (2011) 571-574. https://doi.org/10.1093/rpd/ncq341
  15. F. Trompier, S. Della Monaca, P. Fattibene, I. Clairand, EPR dosimetry of glass substrate of mobile phone LCDs Radiat, Meas 46 (9) (2011) 827-831. https://doi.org/10.1016/j.radmeas.2011.03.033
  16. I. Fiedler, C. Woda, Thermoluminescence of chip inductors from mobile phones for retrospective and accident dosimetry Radiat, Meas 46 (12) (2011) 1862-1865. https://doi.org/10.1016/j.radmeas.2011.05.077
  17. C. Woda, C. Bassinet, F. Trompier, E. Bortolin, S. Della Monaca, P. Fattibene, Radiation-induced damage analysed by luminescence methods in retrospective dosimetry and emergency response Ann, Ist. Super. Sanit a 45 (3) (2009) 297-306.
  18. H. Kim, M.C. Kim, J. Lee, I. Chang, S.K. Lee, J.L. Kim, Thermoluminescence of AMOLED substrate glasses in recent mobile phones for retrospective dosimetry Radiat, Meas 122 (2019) 53-56. https://doi.org/10.1016/j.radmeas.2019.01.004
  19. C. Bassinet, N. Pirault, M. Baumann, I. Clairand, Radiation accident dosimetry: TL properties of mobile phone screen glass Radiat, Meas 71 (2014) 461-465. https://doi.org/10.1016/j.radmeas.2014.03.025
  20. M. Discher, M. Greiter, C. Woda, Photon energy dependence and angular response of glass display used in mobile phones for accident dosimetry Radiat, Meas 71 (2014) 471-474. https://doi.org/10.1016/j.radmeas.2014.04.011
  21. M. Discher, C. Woda, Thermoluminescence emission spectrometry of glass display in mobile phones and resulting evaluation of the dosimetric properties of a specific type of display glass Radiat, Meas 71 (2014) 480-484. https://doi.org/10.1016/j.radmeas.2014.05.001
  22. A. Mrozik, B. Marczewska, P. Bilski, M. Klosowski, Investigation of thermoluminescence properties of mobile phone screen displays as dosimeters for accidental dosimetry Radiat, Phys. Chem. 104 (2014) 88-92. https://doi.org/10.1016/j.radphyschem.2014.01.013
  23. M. Discher, C. Woda, I. Fiedler, Improvement of dose determination using glass display of mobile phones for accident dosimetry Radiat, Meas 56 (2013) 240-243. https://doi.org/10.1016/j.radmeas.2013.01.027
  24. M. Discher, C. Woda, Thermoluminescence of glass display from mobile phones for retrospective and accident dosimetry Radiat, Meas 53-54 (2013) 12-21. https://doi.org/10.1016/j.radmeas.2013.04.002
  25. C. Bassinet, F. Trompier, I. Clairand, Radiation accident dosimetry on glass by TL and EPR spectrometry Health, Phys 98 (2) (2010) 400-405. https://doi.org/10.1097/01.HP.0000346330.72296.51
  26. J.R. Chandler, S. Sholom, S.W.S. McKeever, H.L. Hall, Thermoluminescence and phototransferred thermoluminescence dosimetry on mobile phone protective touchscreen glass, J. Appl. Phys. 126 (2019), 074901. https://doi.org/10.1063/1.5108971
  27. S.W.S. McKeever, R. Minniti, S. Sholom, Phototransferred thermoluminescence (PTTL) dosimetry using Gorilla glass from mobile phones Radiat, Meas 106 (2017) 423-430. https://doi.org/10.1016/j.radmeas.2017.04.005
  28. M. Discher, E. Bortolin, C. Woda, Investigations of touchscreen glasses from mobile phones for retrospective and accident dosimetry Radiat, Meas 89 (2016) 44-51. https://doi.org/10.1016/j.radmeas.2016.02.032
  29. S. Sholom, S.W.S. McKeever, J.R. Chandler, OSL dosimetry with protective glasses of modern smartphones: a fiber-optic, non-destructive approach Radiat, Meas 136 (2020) 106382. https://doi.org/10.1016/j.radmeas.2020.106382
  30. C. Bassinet, W. Le Bris Tl, Investigation of glasses from mobile phone screen protectors for radiation accident dosimetryRadiat, Meas 136 (2020) 106384. https://doi.org/10.1016/j.radmeas.2020.106384
  31. M. Discher, M. Hiller, C. Woda, MCNP simulations of a glass display used in a mobile phone as an accident dosimeter Radiat, Meas 75 (2015) 21-28. https://doi.org/10.1016/j.radmeas.2015.02.013
  32. H. Kim, M. Discher, M.C. Kim, C. Woda, J. Lee, Thermally assisted optically stimulated luminescence protocol of mobile phone substrate glasses for accident dosimetry, Radiat. Meas. 146 (2021), https://doi.org/10.1016/j.radmeas.2021.106625. In press.
  33. D. Richter, A. Richter, K. Dornich, Lexsyg e A new system for luminescence research Geochronometria 40 (4) (2013) 220-228. https://doi.org/10.2478/s13386-013-0110-0
  34. G.S. Polymeris, Thermally assisted OSL (TA-OSL) from various luminescence phosphors; an overview, Radiat. Meas. 90 (2016) 145-152. https://doi.org/10.1016/j.radmeas.2016.01.035
  35. G.S. Polymeris, E. S, ahiner, N. Meric, G. Kitis, Experimental features of natural thermally assisted OSL (NTA-OSL) signal in various quartz samples; preliminary results, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 349 (2015) 24-30.