DOI QR코드

DOI QR Code

Impact of molybdenum cross sections on FHR analysis

  • Ramey, Kyle M. (Nuclear and Radiological Engineering, Georgia Institute of Technology) ;
  • Margulis, Marat (Department of Engineering, University of Cambridge) ;
  • Read, Nathaniel (Department of Engineering, University of Cambridge) ;
  • Shwageraus, Eugene (Department of Engineering, University of Cambridge) ;
  • Petrovic, Bojan (Nuclear and Radiological Engineering, Georgia Institute of Technology)
  • Received : 2021.03.18
  • Accepted : 2021.09.21
  • Published : 2022.03.25

Abstract

A recent benchmarking effort, under the auspices of the Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA), has been made to evaluate the current state of modeling and simulation tools available to model fluoride salt-cooled high temperature reactors (FHRs). The FHR benchmarking effort considered in this work consists of several cases evaluating the neutronic parameters of a 2D prismatic FHR fuel assembly model using the participants' choice of simulation tools. Benchmark participants blindly submitted results for comparison with overall good agreement, except for some which significantly differed on cases utilizing a molybdenum-bearing control rod. Participants utilizing more recently updated explicit isotopic cross sections had consistent results, whereas those using elemental molybdenum cross sections observed reactivity differences on the order of thousands of pcm relative to their peers. Through a series of supporting tests, the authors attribute the differences as being nuclear data driven from using older legacy elemental molybdenum cross sections. Quantitative analysis is conducted on the control rod to identify spectral, reaction rate, and cross section phenomena responsible for the observed differences. Results confirm the observed differences are attributable to the use of elemental cross sections which overestimate the reaction rates in strong resonance channels.

Keywords

Acknowledgement

The presented work is part of a broader effort to benchmark FHR modeling and simulations involving seven team members from four countries [5,6]. The benchmark is performed under the auspices of OECD NEA; the support of Mr. Ian Hill (Deputy Head, Division of Nuclear Science) is gratefully acknowledged.

References

  1. P.N. Haubenreich, J.R. Engel, Experience with the molten-salt reactor experiment, Nucl. Appl. Technol. 8 (2) (1970) 118-136. https://doi.org/10.13182/nt8-2-118
  2. D.T. Ingersoll, C.W. Forsberg, L.J. Ott, D.F. Williams, J.P. Renier, D. Wilson, S.J. Ball, L. Reid, W.R. Corwin, G.D. Del Cul, P.F. Peterson, H. Zhao, P.S. Pickard, E.J. Parma, M. Vernon, Status of Preconceptual Design of the Advanced High-Temperature Reactor (AHTR), Oak Ridge National Laboratory, Oak Ridge, Tennessee, 2004. Report ORNL/TM-2004/104.
  3. D.E. Holcomb, D. Ilas, V.K. Varma, A.T. Cisneros, R.P. Kelly, J.C. Gehin, Core and Refueling Design Studies for the Advanced High Temperature Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 2011. Report ORNL/TM-2011/365.
  4. V.K. Varma, D.E. Holcomb, F.J. Peretz, E.C. Bradley, D. Ilas, A.L. Qualls, N.M. Zaharia, AHTR Mechanical, Structural, and Neutronic Preconceptual Design, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 2012. Report ORNL/TM-2012/320.
  5. B. Petrovic, K. Ramey, I. Hill, Benchmark Specifications for the Fluoride-Salt High-Temperature Reactor (FHR) Reactor Physics Calculations: Phase 1-A and I-B: Fuel Element 2D Benchmark, vol. 5, Nuclear Science, OECD Publishing, Paris, France, 2020. NEA/NSC/R, 2021.
  6. B. Petrovic, K. Ramey, I. Hill, E. Losa, M. Elsawi, Z. Wu, C. Lu, J. Gonzales, D. Novog, G. Chee, K. Huff, M. Margulis, N. Read, E. Shwageraus, Preliminary results of the NEA FHR benchmark phase I-A and I-B (fuel element 2D benchmark), in: The International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Raleigh, NC, 2021.
  7. J. Leppanen, et al., The Serpent Monte Carlo code: status, development and applications in 2013, Ann. Nucl. Energy 82 (2015) 142-150. https://doi.org/10.1016/j.anucene.2014.08.024
  8. B.A. Lindley, J.G. Hosking, D.J. Powney, B.S. Tollit, T.D. Newton, R. Perry, T.C. Ware, P.N. Smith, Current status of the reactor physics code WIMS and recent developments, Ann. Nucl. Energy 102 (2017) 148-157. https://doi.org/10.1016/j.anucene.2016.09.013
  9. F. Rahnema, B. Petrovic, P. Singh, P. Burke, H. Noorani, X. Sun, G. Yoder, P. Tsvetkov, J. Zhang, D. Zhang, D. Ilas, "The Challenges in Modeling and Simulation of Fluoride Salt Cooled High Temperature Reactors," White Paper CRMP-2017-9-001, Georgia Institute of Technology, Atlanta, GA, USA, 2017.
  10. K.M. Ramey, B. Petrovic, Monte Carlo modeling and simulations of AHTR fuel assembly to support V&V of FHR core physics methods, Ann. Nucl. Energy 118 (2018) 272-282. https://doi.org/10.1016/j.anucene.2018.04.003
  11. B. Petrovic, T. Flaspoehler, K. Ramey, Benchmarking FHR core physics simulations: 2D fuel assembly model, in: Proc. 12th Intl. Conf. On Nuclear Option in Countries with Small and Medium Electricity Grids, June 3-6, Zadar, Croatia, 2018.
  12. M.B. Chadwick, P. Oblozinsky, M. Herman, N.M. Greene, R.D. McKnight, D.L. Smith, P.G. Young, R.E. MacFarlane, G.M. Hale, S.C. Frankle, A.C. Kahler, T. Kawano, R.C. Little, D.G. Madland, P. Moller, R.D. Mosteller, P.R. Page, ENDF/B-VII.0: next generation evaluated nuclear data library for nuclear science and technology, Nucl. Data Sheets 107 (12) (2006) 2931-3060. https://doi.org/10.1016/j.nds.2006.11.001
  13. O. Cabellos, Processing and validation of JEFF-3.1.2 cross-section library into various formats: ACE, PENDF, GENDF, MATXSR and BOXER, Nucl. Data Sheets 118 (2014) 456-458. https://doi.org/10.1016/j.nds.2014.04.105
  14. The ANSWERS Software Service, WIMS A Modular Scheme for Neutronics Calculations - User Guide for Version 10, ANSWERS/WIMS/REPORT/014, 2015.
  15. P.K. Romano, N.E. Horelik, B.R. Herman, A.G. Nelson, B. Forget, K. Smith, OpenMC: a state-of-the-art Monte Carlo code for research and development, Ann. Nucl. Energy 82 (2015) 90-97. https://doi.org/10.1016/j.anucene.2014.07.048
  16. M.B. Chadwick, M. Herman, P. Oblozinsky, M.E. Dunn, Y. Danon, A.C. Kahler, D.L. Smith, B. Pritychenko, G. Arbanas, R. Arcilla, R. Brewer, D.A. Brown, R. Capote, A.D. Carlson, Y.S. Cho, H. Derrien, K. Guber, G.M. Hale, P. Young, ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data, Nucl. Data Sheets 112 (12) (2011) 2887-2996. https://doi.org/10.1016/j.nds.2011.11.002
  17. R.J. Howerton, F. Schmittroth, R.E. Schenter, Material 4200 Incident Neutron Data, National Nuclear Data Center, Jan 1990 [Online]. Available: https://www-nds.iaea.org/public/download-endf/ENDF-B-VI-8/NEUTRON/mat/endfb-vi-8_n_4200.txt. (Accessed 13 February 2021). Accessed.
  18. A.J.M. Plompen, O. Cabellos, C. De Saint Jean, The joint evaluated fission and fusion nuclear data library, JEFF-3.3, The European Physical Journal A 56 (2020).
  19. D.A. Brown, M.B. Chadwick, R. Capote, A.C. Kahler, A. Trkov, M.W. Herman, A.A. Sonzogni, Y. Danon, A.D. Carlson, M. Dunn, D.L. Smith, G.M. Hale, G. Arbanas, R. Arcilla, C.R. Bates, B. Beck, B. Becker, F. Brown, Y. Zhu, ENDF/B-VIII.0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data, Nucl. Data Sheets 148 (2018) 1-142. https://doi.org/10.1016/j.nds.2018.02.001
  20. XMAS LWPC 172-group structure [Online]. Available: http://serpent.vtt.fi/mediawiki/index.php/XMAS_LWPC_172-group_structure. (Accessed 7 February 2021). Accessed.
  21. Table of Nuclides, Nuclear data center at KAERI [Online]. Available, http://atom.kaeri.re.kr/nuchart/#. (Accessed 7 February 2021).