DOI QR코드

DOI QR Code

Effect of process parameters on the recovery of thorium tetrafluoride prepared by hydrofluorination of thorium oxide, and their optimization

  • Kumar, Raj (Uranium Extraction Division, Bhabha Atomic Research Centre) ;
  • Gupta, Sonal (Uranium Extraction Division, Bhabha Atomic Research Centre) ;
  • Wajhal, Sourabh (Solid State Physics Division, Bhabha Atomic Research Centre) ;
  • Satpati, S.K. (Uranium Extraction Division, Bhabha Atomic Research Centre) ;
  • Sahu, M.L. (Uranium Extraction Division, Bhabha Atomic Research Centre)
  • Received : 2021.03.23
  • Accepted : 2021.11.04
  • Published : 2022.05.25

Abstract

Liquid fueled molten salt reactors (MSRs) have seen renewed interest because of their inherent safety features, higher thermal efficiency and potential for efficient thorium utilisation for power generation. Thorium fluoride is one of the salts used in liquid fueled MSRs employing Th-U cycle. In the present study, ThF4 was prepared by hydro-fluorination of ThO2 using anhydrous HF gas. Process parameters viz. bed depth, hydrofluorination time and hydrofluorination temperature, were optimized for the preparation of ThF4 in a static bed reactor setup. The products were characterized with X-Ray diffraction and experimental conditions for complete conversion to ThF4 were established which also corroborated with the yield values. Hydrofluorination of ThO2 at 450 ℃ for half an hour at a bed depth of 6 mm gave the best result, with a yield of about 99.36% ThF4. No unconverted oxide or any other impurity was observed. Rietveld refinement was performed on the XRD data of this ThF4, and Chi2 value of 3.54 indicated good agreement between observed and calculated profiles.

Keywords

Acknowledgement

The authors are thankful to Shri Pramendra Singh, Shri U.B. Naik, Shri Dulal Mandal and all other staff of our lab for their extended support in carrying out the hydrofluorination experiments. The authors also thank Smt. Karuna Kamble for their support in carrying out XRD experiments and analysis. The authors thank Shri K.N. Hareendhran and Shri S.V. Kadam for carrying out particle size analysis.

References

  1. J. Serp, M. Allibert, O. Benes, S. Delpech, O. Feynberg, V. Ghetta, D. Heuer, D. Holcomb, V. Ignatiev, J.L. Kloosterman, L. Luzzi, The molten salt reactor (MSR) in generation IV: overview and perspectives, Prog. Nucl. Energy 77 (2014) 308-319, https://doi.org/10.1016/j.pnucene.2014.02.014.
  2. D. LeBlanc, Molten salt reactors: a new beginning for an old idea, Nucl. Eng. Des. 240 (6) (2010) 1644-1656, https://doi.org/10.1016/j.nucengdes.2009.12.033.
  3. L. Mathieu, D. Heuer, R. Brissot, C. Garzenne, C. Le Brun, D. Lecarpentier, E. Liatard, et al., The thorium molten salt reactor: moving on from the MSBR, Prog. Nucl. Energy 48 (7) (2006) 664-679, https://doi.org/10.1016/j.pnucene.2006.07.005.
  4. B. Mignacca, G. Locatelli, Economics and finance of molten salt reactors, Prog. Nucl. Energy 129 (2020) 103503, https://doi.org/10.1016/j.pnucene.2020.103503.
  5. G. Locatelli, M. Mancini, N. Todeschini, Generation IV nuclear reactors: current status and future prospects, Energy Pol. 61 (2013) 1503-1520, https://doi.org/10.1016/j.enpol.2013.06.101.
  6. T. Abram, S. Ion, Generation-IV nuclear power: a review of the state of the science, Energy Pol. 36 (12) (2008) 4323-4330, https://doi.org/10.1016/j.enpol.2008.09.059.
  7. M.W. Rosenthal, P.R. Kasten, R.B. Briggs, Molten-salt reactors-history, status, and potential, Nucl. Appl. Technol. 8 (2) (1970) 107-117, https://doi.org/10.13182/NT70-A28619.
  8. R. Hargraves, R. Moir, Liquid Fluoride Thorium Reactors: an old idea in nuclear power gets re-examined, Am. Sci. 98 (4) (2010) 304-313. Published By: Sigma Xi, The Scientific Research Honor Society, https://www.jstor.org/stable/27859537. https://doi.org/10.1511/2010.85.304
  9. P. Soucek, O. Benes, B. Claux, E. Capelli, M. Ougier, V. Tyrpekl, J.F. Vigier, R.J. Konings, Synthesis of UF4 and ThF4 by HF gas fluorination and redetermination of the UF4 melting point, J. Fluor. Chem. 200 (2017) 33-40, https://doi.org/10.1016/j.jfluchem.2017.05.011, 2017.
  10. M. Brovchenko, D. Heuer, E. Merle-Lucotte, M. Allibert, V. Ghetta, A. Laureau, P. Rubiolo, Design-related studies for the preliminary safety assessment of the molten salt fast reactor, Nucl. Sci. Eng. 175 (3) (2013) 329-339, https://doi.org/10.13182/NSE12-70.
  11. D. Gerardin, M. Allibert, D. Heuer, A. Laureau, E. Merle-Lucotte, C. Seuvre, Design Evolutions of the Molten Salt Fast Reactor, 2017. https://inis.iaea.org/collection/NCLCollectionStore/_Public/49/085/49085958.pdf?r=1.
  12. H. Rouch, O. Geoffroy, P. Rubiolo, A. Laureau, M. Brovchenko, D. Heuer D, E. Merle-Lucotte, Preliminary thermal-hydraulic core design of the molten salt fast reactor (MSFR), Ann. Nucl. Energy 64 (2014) 449-456, https://doi.org/10.1016/j.anucene.2013.09.012.
  13. T.J. Dolan (Ed.), Molten Salt Reactors and Thorium Energy, Woodhead Publishing, 2017.
  14. F.L. Cuthbert, Thorium Production Technology, Addison-Wesley Pub. Co., 1958, pp. 31-32.
  15. J.M. Derfer, M.M. Derfer, Encyclopedia of Chemical Technology Kirk-Othmer, vol. 22, 1978.
  16. H.S. Correa, E.C. Costa, DRY-WAY PREPARATION OF THORIUM TETRAFLUORIDE, No. IEA-185, Instituto de Energia Atomica, Sao Paulo (Brazil), 1969, https://www.ipen.br/biblioteca/iea/IEA_PUB_185.pdf.
  17. J.P. Flynn, Method of dehydrating hydrates of thorium fluoride, 991,149, U.S. Patent 2 (1961). issued July 4.
  18. W.J. Asker, E.R. Segnit, A.W. Wylie, The potassium thorium fluorides, J. Chem. Soc. (1952) 4470-4479, https://doi.org/10.1039/JR9520004470, 857.
  19. R.W.M. D'Eye, G.W. Booth, The hydrates of thorium tetrafluoride, J. Inorg. Nucl. Chem. 1 (4-5) (1955) 326-333, https://doi.org/10.1016/0022-1902(55)80039-5.
  20. W.H. Zachariasen, Production of thorium fluoride, 270, U.S. Patent 2 (1959) 899. issued August 11.
  21. L.R. Batsanova, Rare-earth fluorides, Russ. Chem. Rev. 40 (6) (1971) 465-484, https://doi.org/10.1070/RC1971v040n06ABEH001932.
  22. C.W. Bale, E. Belisle, Fact-Web suite of interactive programs. www.factsage.com.
  23. C.N.A.C.Z. Bahri, A.F. Ismail, A.A. Majid, Synthesis of thorium tetrafluoride (ThF4) by ammonium hydrogen difluoride (NH4HF2), Nuclear Engineering and Technology 51 (3) (2019) 792-799, https://doi.org/10.1016/j.net.2018.12.023.
  24. S. Mukherjee, S. Dash, S.K. Mukerjee, K.L. Ramakumar, Thermodynamic investigations of oxyfluoride of thorium and uranium, J. Nucl. Mater. 465 (2015) 604-614, https://doi.org/10.1016/j.jnucmat.2015.06.038.
  25. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr. 2 (2) (1969) 65-71, https://doi.org/10.1107/S0021889869006558.
  26. J. Rodriguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction, Phys. B Condens. Matter 192 (1993) 55-69, https://doi.org/10.1016/0921-4526(93)90108-I.
  27. L. Martel, E. Capelli, M. Body, M. Klipfel, O. Benes, L. Maksoud, P.E. Raison, E. Suard, L. Visscher, C. Bessada, C. Legein, Insight into the crystalline structure of ThF4 with the combined use of neutron diffraction, 19F magic-angle spinning-NMR, and density functional theory calculations, Inorg. Chem. 57 (24) (2018) 15350-15360, https://doi.org/10.1021/acs.inorgchem.8b02683.
  28. R.L. Barns, Lattice parameters and thermal expansion coefficients of thorium tetrafluoride (monoclinic), Mater. Res. Bull. 12 (4) (1977) 327-330, https://doi.org/10.1016/0025-5408(77)90047-2.
  29. Website, accessed on 7th October, 2021, https://www.chemicalbook.com/ChemicalProductProperty_EN_CB2459967.htm.
  30. Website:, accessed on 7th October, 2021, https://www.chemsrc.com/en/cas/13709-59-6_259752.html.