DOI QR코드

DOI QR Code

Implementation of waste silicate glass into composition of ordinary cement for radiation shielding applications

  • Eid, Mohanad S. (Physics Department, Faculty of Science, Tanta University) ;
  • Bondouk, I.I. (Physics Department, Faculty of Science, Tanta University) ;
  • Saleh, Hosam M. (Radioisotope Department, Nuclear Research Center, Egyptian Atomic Energy Authority) ;
  • Omar, Khaled M. (Physics Department, Faculty of Science, Tanta University) ;
  • Sayyed, M.I. (Department of Nuclear Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University (IAU)) ;
  • El-Khatib, Ahmed M. (Physics Department, Faculty of Science, Alexandria University) ;
  • Elsafi, Mohamed (Physics Department, Faculty of Science, Alexandria University)
  • Received : 2021.07.17
  • Accepted : 2021.10.07
  • Published : 2022.04.25

Abstract

The aim of this work is to study the radiation shielding properties of cement samples with waste glass incortated into its composition. The mass attenuation coefficient (MAC) of the samples were experimentally determined to evaluate their radiation shielding ability. The experimental coefficient was evaluated using NaI detector for gamma energies between 59.53 keV and 1408.01 keV using different radioactive point sources Am-241, Eu-152, Co-60, and Cs-137, and the gamma transmission parameters half-value layer, mean free path, and transmission factor were calculated. The theoretical coefficient of the composites was determined using Geant4 and XCOM software. The results were also compared against Geant4 and XCOM simulations by calculating the relative deviation between the values to determine the accuracy of the results. In addition the mechanical properties (including Compressive and porosity) as well as the thermogravimetric analysis were tested for the present samples. Overall, it was concluded that the cement sample with 50% waste glass has the greatest shielding potential for radiation shielding applications and is a useful way to reuse waste glass.

Keywords

References

  1. Y.S. Rammah, K.A. Mahmoud, M.I. Sayyed, F.I. El-Agawany, R. El-Mallawany, Novel vanadyl lead-phosphate glasses: P2O5-PbO-ZnONa2O-V2O5: synthesis, optical, physical and gamma photon attenuation properties, J. NonCryst. Solids 534 (2020) 119944. https://doi.org/10.1016/j.jnoncrysol.2020.119944
  2. M. Dong, S. Zhou, X. Xue, X. Feng, M.I. Sayyed, M.U. Khandaker, D.A. Bradley, The potential use of boron containing resources for protection against nuclear radiation, Radiat. Phys. Chem. (2021) 109601.
  3. M.I. Sayyed, Y. Al-Hadeethi, M.M. AlShammari, M. Ahmed, S.H. Al-Heniti, Y.S. Rammah, Physical, optical and gamma radiation shielding competence of newly boro-tellurite based glasses: TeO2-B2O3-ZnO-Li2O3-Bi2O3, Ceram. Int. 47 (2021) 611-618. https://doi.org/10.1016/j.ceramint.2020.08.168
  4. M.I. sayyed, Y. Elmahroug, B.O. Elbashir, Shams A.M. Issa, Gamma-ray shielding properties of zinc oxide soda lime silica glasses, J. Mater. Sci. Mater 28 (2017) 4064-4074. https://doi.org/10.1007/s10854-016-6022-z
  5. M. Elsafi, M.F. Alrashedi, M.I. Sayyed, I.F. Al-Hamarneh, M.A. El-Nahal, M. ElKhatib, M.U. Khandaker, H. Osman, A.E. Askary, The potentials of Egyptian and Indian granites for protection of ionizing radiation, Materials 14 (2021) 3928, https://doi.org/10.3390/ma14143928.
  6. B. Aygun, E. S, akar, O. Agar, M.I. Sayyed, A. Karabulut, V.P. Singh, Development of new heavy concretes containing chrome-ore for nuclear radiation shielding applications, Prog. Nucl. Energy 133 (2021) 103645. https://doi.org/10.1016/j.pnucene.2021.103645
  7. K.A. Mahmoud, M.I. Sayyed, O.L. Tashlykov, Comparative studies between the shielding parameters of concretes with different additive aggregates using MCNP-5 simulation code, Radiat. Phys. Chem. 165 (2019) 108426. https://doi.org/10.1016/j.radphyschem.2019.108426
  8. G. Tyagi, A. Singhal, S. Routroy, D. Bhunia, M. Lahoti, A review on sustainable utilization of industrial wastes in radiation shielding concrete, Mater. Today Proc. 32 (2020) 746-751. https://doi.org/10.1016/j.matpr.2020.03.474
  9. Y.S. Choi, S.M. Lee, Fundamental properties and radioactivity shielding performance of concrete recycled cathode ray tube waste glasses and electric arc furnace slag as aggregates, Prog. Nucl. Energy 133 (2021) 103649. https://doi.org/10.1016/j.pnucene.2021.103649
  10. F. Pahlevani, V. Sahajwalla, From waste glass to building materials-An innovative sustainable solution for waste glass, J. Clean. Prod. 191 (2018) 192-206. https://doi.org/10.1016/j.jclepro.2018.04.214
  11. M.M.A. Dawoud, M.M. Hegazy, W.K. Helew, H.M. Saleh, Overview of environmental pollution and clean management of heavy metals and radionuclides by using microcrystalline cellulose, J. Nucl. Ene. Sci. Power Gener. Technol 3 (2021) 2.
  12. T.A. Bayoumi, H.M. Saleh, S.B. Eskander, Solidification of hot real radioactive liquid scintillator waste using cement-clay composite, Monatshefte Fur Chemie-Chemical Mon 144 (2013) 1751-1758. https://doi.org/10.1007/s00706-013-1065-9
  13. H.M. Saleh, Some applications of clays in radioactive waste management, in: L.R. Wesley (Ed.), Clays Clay Miner. Geol. Orig. Mech. Prop. Ind. Appl., Nova Science Pub. Inc, 2014, pp. 403-415.
  14. H.M. Saleh, R.F. Aglan, H.H. Mahmoud, Qualification of corroborated real phytoremediated radioactive wastes under leaching and other weathering parameters, Prog. Nucl. Energy. 119 (2020) 103178, https://doi.org/10.1016/j.pnucene.2019.103178.
  15. S.B. Eskander, H.M. Saleh, M.E. Tawfik, T.A. Bayoumi, Towards potential applications of cement-polymer composites based on recycled polystyrene foam wastes on construction fields: Impact of exposure to water ecologies, Case Stud. Constr. Mater 15 (2021), e00664.
  16. H.M. Saleh, S.B. Eskander, Impact of water flooding on hard cement-recycled polystyrene composite immobilizing radioactive sulfate waste simulate, Constr. Build. Mater 222 (2019) 522-530. https://doi.org/10.1016/j.conbuildmat.2019.06.173
  17. H.M. Saleh, F.A. El-Saied, T.A. Salaheldin, A.A. Hezo, Influence of severe climatic variability on the structural, mechanical and chemical stability of cement kiln dust-slag-nanosilica composite used for radwaste solidification, Constr. Build. Mater 218 (2019) 556-567, https://doi.org/10.1016/j.conbuildmat.2019.05.145.
  18. A. Mehta, D.K. Ashish, Silica fume and waste glass in cement concrete production: a review, J. Build. Eng. 29 (2020) 100888, https://doi.org/10.1016/j.jobe.2019.100888.
  19. M. Adaway, Y. Wang, Recycled glass as a partial replacement for fine aggregate in structural concrete-Effects on compressive strength, Electron. J. Struct. Eng. 14 (2015) 116-122. https://doi.org/10.56748/ejse.141951
  20. F. Krausmann, S. Gingrich, N. Eisenmenger, K.-H. Erb, H. Haberl, M. Fischer-Kowalski, Growth in global materials use, GDP and population during the 20th century, Ecol. Econ. 68 (2009) 2696-2705. https://doi.org/10.1016/j.ecolecon.2009.05.007
  21. A. Saccani, M.C. Bignozzi, ASR expansion behavior of recycled glass fine aggregates in concrete, Cem. Concr. Res. 40 (2010) 531-536. https://doi.org/10.1016/j.cemconres.2009.09.003
  22. N.A. Soliman, A.F. Omran, A. Tagnit-Hamou, Laboratory characterization and field application of novel ultra-high-performance glass concrete, ACI Mater. J. 113 (2016) 307.
  23. A. Omran, A. Tagnit-Hamou, Performance of glass-powder concrete in field applications, Construct. Build. Mater. 109 (2016) 84-95. https://doi.org/10.1016/j.conbuildmat.2016.02.006
  24. A.S. For T. and M.C.C.-1 on Cement, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), ASTM International, 2013.
  25. A. Standard, Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water, ASTM C20-00, West Conshohocken, PA, 2015.
  26. H.M. Saleh, I.I. Bondouk, E. Salama, H.A. Esawii, Consistency and shielding efficiency of cement-bitumen composite for use as gamma-radiation shielding material, Prog. Nucl. Energy 137 (2021) 103764. https://doi.org/10.1016/j.pnucene.2021.103764
  27. M.I. Abbas, M. Elsafi, M.M. Gouda, M. Abd-Elzaher, A. Hamzawy, M.S. Badawi, A.A. Thabet, S. Noureddine, A.M. El-Khatib, NaI cubic detector full-energy peak efficiency, including coincidence and self-absorption corrections for rectangular sources using analytical method, J. Radioanal. Nucl. Chem. 327 (2021) 251-258. https://doi.org/10.1007/s10967-020-07508-8
  28. M.S. Badawi, S. Noureddine, Y.N. Kopatch, M.I. Abbas, I.N. Ruskov, D.N. Grozdanov, A.A. Thabet, N.A. Fedorov, M.M. Gouda, C. Hramco, Characterization of the efficiency of a cubic NaI detector with rectangular cavity for axially positioned sources, J. Instrum. 15 (2020) P02013. https://doi.org/10.1088/1748-0221/15/02/p02013
  29. G.A. Alharshan, D.A. Aloraini, M.A. Elzaher, M.S. Badawi, M.T. Alabsy, M.I. Abbas, A.M. El-Khatib, A comparative study between nano-cadmium oxide and lead oxide reinforced in high density polyethylene as gamma rays shielding composites, Nucl. Technol. Radiat. Protect. 35 (2020) 42-49, https://doi.org/10.2298/NTRP2001042A.
  30. M.A. Kiani, S.J. Ahmadi, M. Outokesh, R. Adeli, H. Kiani, Study on physicomechanical and gamma-ray shielding characteristics of new ternary nanocomposites, Appl. Radiat. Isot. 143 (2019) 141-148. https://doi.org/10.1016/j.apradiso.2018.10.006
  31. M.I. Sayyed, M.G. Dong, H.O. Tekin, G. Lakshminarayana, M.A. Mahdi, Comparative investigations of gamma and neutron radiation shielding parameters for different borate and tellurite glass systems using WinXCom program and MCNPX code, Mater. Chem. Phys. 215 (2018) 183-202. https://doi.org/10.1016/j.matchemphys.2018.04.106
  32. J.F. Briesmeister, MCNP^< TM>-A General Monte Carlo N-Particle Transport Code, Version 4C, LA-13709-M, 2000.
  33. S. Hurtado, M. Garcia-Leon, R. Garcia-Tenorio, GEANT4 code for simulation of a germanium gamma-ray detector and its application to efficiency calibration, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 518 (2004) 764-774. https://doi.org/10.1016/j.nima.2003.09.057
  34. R. Brun, F. Rademakers, ROOTdan object oriented data analysis framework, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 389 (1997) 81-86. https://doi.org/10.1016/S0168-9002(97)00048-X
  35. M.I. Abbas, M.S. Badawi, A.A. Thabet, Y.N. Kopatch, I.N. Ruskov, D.N. Grozdanov, S. Noureddine, N.A. Fedorov, M.M. Gouda, C. Hramco, Efficiency of a cubic NaI (Tl) detector with rectangular cavity using standard radioactive point sources placed at non-axial position, Appl. Radiat. Isot. 163 (2020) 109139. https://doi.org/10.1016/j.apradiso.2020.109139
  36. M. Elsafi, M.A. El-Nahal, M.F. Alrashedi, O.I. Olarinoye, M.I. Sayyed, M.U. Khandaker, H. Osman, S. Alamri, M.I. Abbas, Shielding properties of some marble types: a comprehensive study of experimental and XCOM results, Materials 14 (2021) 4194, https://doi.org/10.3390/ma14154194.
  37. M.I. Sayyed, B. Albarzan, A.H. Almuqrin, A.M. El-Khatib, A. Kumar, D.I. Tishkevich, A.V. Trukhanov, M. Elsafi, Experimental and theoretical study of radiation shielding features of CaO-K2O-Na2O-P2O5 glass systems, Materials 14 (2021) 3772, https://doi.org/10.3390/ma14143772.
  38. Mengge Dong, Xiangxin Xue, Yang He, Zhefu Li, Highly cost-effective shielding composite made from vanadium slag and boron-rich slag and its properties, Radiat. Phys. Chem. 141 (2017) 239-244. https://doi.org/10.1016/j.radphyschem.2017.07.023
  39. S. Yasmin, B.S. Barua, Khandaker Mu, Rashid Ma, D.A. Bradley, Olatunji Ma, M. Kamal, Studies of ionizing radiation shielding effectiveness of silica-based commercial glasses used in Bangladeshi dwellings, Results Phys. 9 (2018) 541-549. https://doi.org/10.1016/j.rinp.2018.02.075
  40. S. Yasmin, Z.S. Rozaila, Khandaker Mu, B.S. Barua, F.U.Z. Chowdhury, Rashid Ma, D.A. Bradley, The radiation shielding offered by the commercial glass installed in Bangladeshi dwellings, Radiat. Eff. Defect Solid 173 (7-8) (2018) 657-672. https://doi.org/10.1080/10420150.2018.1493481
  41. M.I. Sayyed, O.I. Olarinoye, Elsafi Mohamed, Assessment of gamma-radiation attenuation characteristics of Bi2O3-B2O3-SiO2-Na2O glasses using Geant4 simulation code, Eur. Phys. J. Plus 136 (2021) 535, https://doi.org/10.1140/epjp/s13360-021-01492-y.