DOI QR코드

DOI QR Code

Removal of Radio Frequency Interference of 1.29 GHz Doppler Wind Profiler Radar

1.29 GHz 도플러 윈드프로파일러 스펙트럼에서 전파 간섭 신호 제거

  • 이경훈 (부경대학교 지구환경시스템과학부) ;
  • 권병혁 (부경대학교 환경대기과학과) ;
  • 김유진 (부경대학교 지구환경시스템과학부)
  • Received : 2022.04.02
  • Accepted : 2022.06.17
  • Published : 2022.06.30

Abstract

During the test operation period of the wind profiler prototype, radio frequency interference (RFI) contamination occurred in the spectrum. The reference of the RFI that removed the algorithm appearing in the wind profiler spectrum were investigated, and a new algorithm was developed to remove the RFI. First, it was filtered with a threshold value of 0.1 m/s of the spectral width, and the range of the number of gates with the same radial velocity was determined according to whether the beam was a vertical beam or an oblique beam. RFI contamination was removed through filtering and scanning of non-weather signals, and the continuity of wind vectors calculated from the improved spectral radial velocity was verified.

윈드프로파일러 시제품의 시험 운용 기간 중 스펙트럼에 전파 간섭(RFI: Radio Frequency Interference) 오염이 발생하였다. 윈드프로파일러 spectra에 나타나는 전파 간섭 제거 알고리즘의 개발 과정과 그 결과를 조사하였고, 전파 간섭을 제거하기 위한 새로운 알고리즘을 개발하였다. 스펙트럼 폭의 임계값 0.1 m/s로 우선 필터링하고 연직 빔인지 경사 빔인지에 따라 동일한 시선속도가 연속되는 gate 수 범위를 결정하였다. 전파 간섭 오염은 비기상 신호의 필터링과 스캔을 통해 제거되었고, 개선된 스펙트럼의 시선속도로부터 산출된 바람벡터의 연속성으로 검증되었다.

Keywords

Acknowledgement

이 연구는 기상청 기상레이더센터 R&D "국가 레이더 통합 활용기술 개발 사업"의 "레이더 기반 위험기상 감시기술 개발(KMA2021-03121)" 지원으로 수행되었습니다.

References

  1. W. Jo, B. Kwon, and H. Yoon, "Quality Control of the UHF Wind Profiler Radar," J. of the Korea Institute of Electronics Communications Sciences, vol. 13, no. 2, 2018, pp. 277-290.
  2. W. Jo, B. Kwon, and H. Yoon, "Clutter Fence Effect on Data Quality of Ultra High Frequency Radar," J. of the Korea Institute of Electronics Communications Sciences, vol. 14, no. 2, 2019, pp. 275-282.
  3. K. Lee, B. Kwon, and H. Yoon, "Evaluation of UHF Radar Data," J. of the Korea Institute of Electronics Communications Sciences, vol. 16, no. 3, 2021, pp. 423-428.
  4. K. Lee, B. Kwon, and H. Yoon, "Evaluation of Wind Speed Depending on Pulse Resolution of UHF Wind Profiler Radar," J. of the Korea Institute of Electronics Communications Sciences, vol. 16, no. 3, 2021, pp. 429-436.
  5. B. Emery and A. Camps, Introduction to satellite remote sensing: atmosphere, ocean, land and cryosphere applications. Amsterdam, Netherlands: Elsevier, 2017.
  6. S. Lee and G. Lee, "Development of Simulation Method of Doppler Power Spectrum and Raw Time Series Signal Using Average Moments of Radar Wind Profiler," J. of the Korea Institute of Electronics Communications Sciences, vol. 15, no. 6, 2020, pp. 1037-1044.
  7. K. Van, and W. Douglas, Profiler training manual# 1: principles of wind profiler operation. Geneva, Switzerland: The Program, 1989.
  8. W. Lambert, F. Merceret, G. Talor, and J. Ward, "Performance of five 915-MHz wind profilers and an associated automated quality control algorithm in an operational environment," J. Atmos, Ocean, Technol, vol. 20, 2003, pp. 1488-1495. https://doi.org/10.1175/1520-0426(2003)020<1488:POFMWP>2.0.CO;2
  9. L. Cornman, R. Goodrich, C. Morse, and W. Ecklund, "A fuzzy logic method for improved moment estimation from Doppler spectra," J. Atmos, Ocean, Technol, vol. 15, 1998, pp. 1287-1305. https://doi.org/10.1175/1520-0426(1998)015<1287:AFLMFI>2.0.CO;2
  10. W. Jo, B. Kwon, and H. Yoon, "Retrieval of Radial Velocity and Moment Based on the Power Spectrum Density of Scattered 1290 MHz Signals with Altitude," J. of the Korea Institute of Electronics Communications Sciences, vol. 13, no. 6, 2018, pp. 1191-1198.
  11. B. Lindseth, "A 449 MHz modular wind profiler radar system," Technical report, 2012.
  12. Vaisala, "Wind Profiling Technical Note; History, Principles, and Applications," Technical report, 2002.
  13. B. Heo, Wind Profiler and Atmospheric Detection. Seoul: Hongneung, 2014.
  14. R. Barbre. "Development of a climatology of vertically complete wind profiles from Doppler Radar Wind Profiler systems," In Proc. AMS Int, Conf. on Aviation, Range and Aerospace Meteorology (ARAM), City of Phoenix, State of Arizona, United States, 2015.