DOI QR코드

DOI QR Code

Carboxymethyl cellulose/polyethylene glycol superabsorbent hydrogel cross-linked with citric acid

  • Lee, Deuk Yong (Department of Biomedical Engineering, Daelim University) ;
  • Chun, Cheolbyong (Department of Biomedical Engineering, Daelim University) ;
  • Son, Siwon (Department of Biomedical Engineering, Daelim University) ;
  • Kim, Yena (Department of Biomedical Engineering, Daelim University)
  • Received : 2022.04.26
  • Accepted : 2022.05.23
  • Published : 2022.06.30

Abstract

Carboxymethyl cellulose/poly(ethylene glycol) (CMC/PEG) hydrogels crosslinked with citric acid (CA) are synthesized to evaluate the effect of CMC molecular weight (Mw), PEG and CA concentration on the optical property, swelling rate (SR), degradation rate (DR), and cytotoxicity and cell proliferation of hydrogels. For crosslinked CMC/PEG hydrogels, the FT-IR peak intensity associated with hydroxyl groups decreases due to PEG intercalation (esterification crosslinking) between CMC chains in a similar manner as the concentration of CA crosslinker increases. Crosslinked CMC (Mw = 90,000)/PEG hydrogels with 10 % CA dissolve regardless of PEG content. However, the SR of the CMC (Mw = 250,000)/PEG hydrogels decrease from 4923 % to 168 % with increasing PEG and CA concentrations from 0 to 20 % and from 0 to 25 %, respectively. As the Mw of CMC increases, the DR of the hydrogel is greatly improved. CMC (Mw = 250,000)/PEG10 hydrogels with 10 % CA exhibit the optimum properties of high absorbing capacity (3,200 %) with moderate DR (54 %), stiffness (1.39 ± 0.19 GPa), and cell viability (94.8 ± 1.3 %). CA-crosslinked CMC/PEG hydrogels are highly suitable for wound dressing or personal care applications due to their non-toxicity, good cell proliferation, SR, and mechanical properties.

Keywords

References

  1. J. Shin, H. Jeong and D.Y. Lee, "Synthesis of PVA/NaCMC hydrogels crosslinked by cyclic freezing/thawing and subsequent gamma-ray irradiation and their properties", J. Biomed. Eng. Res. 39 (2018) 161. https://doi.org/10.9718/JBER.2018.39.4.161
  2. N.S.V. Capanema, A.A.P. Mansur, A.C.D. Jesus, S.M. Carvalho, L.C.D. Oliveira and H.S. Mansur, "Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications", Intl. J. Biol. Macromol. 106 (2018) 1218. https://doi.org/10.1016/j.ijbiomac.2017.08.124
  3. J. Shin, D.Y. Lee, B. Kim and J.I. Yoon, "Effect of polyethylene glycol molecular weight on cell growth behavior of polyvinyl alcohol/carboxymethyl cellulose/polyethylene glycol hydrogel", J. Appl. Polym. Sci. 137 (2020) 49568. https://doi.org/10.1002/app.49568
  4. J. Shin, D.Y. Lee, J.I. Yoon and Y. Song, "Effect of CMC concentration on cell growth behavior of PVA/ CMC hydrogel", Macromol. Res. 28 (2020) 813. https://doi.org/10.1007/s13233-020-8106-0
  5. Y. Li, C. Zhu, D. Fan, R. Fu, P. Ma, Z. Duan, X. Li, H. Lei and L. Chi, "Construction of porous sponge-like PVA-CMC-PEG hydrogels with pH-sensitivity via phase separation for wound dressing", Intl. J. Polym. Mater. Polym. Biomater. 69 (2020) 505. https://doi.org/10.1080/00914037.2019.1581200
  6. Y. Li, C. Zhu, D. Fan, R. Fu, P. Ma, Z. Duan, X. Li, H. Lei and L. Chi, "A bi-layer PVA/CMC/PEG hydrogel with gradually changing pore sizes for wound dressing", Macromol. Biosci. (2019) 1800424. https://doi.org/10.1002/mabi.201800424
  7. C. Demitri, R.D. Sole, F. Scalera, A. Sannino, G. Vasapollo, A. Maffezzoli, L. Ambrosio and L. Nicolais, "Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid", J. Appl. Polym. Sci. 110 (2008) 2453. https://doi.org/10.1002/app.28660
  8. V.S. Ghorpade, R.J. Dias, K.K. Mali and S.I. Mulla, "Citric acid crosslinked carboxymethylcellulose-polyvinyl alcohol hydrogel films for extended release of water soluble basic drugs", J. Drug Delivery Sci. Technol. 52 (2019) 421. https://doi.org/10.1016/j.jddst.2019.05.013
  9. M.G. Raucci, M.A. Alvarez-Perez, C. Demitri, D. Glugliano, V. Benedictis, A. Sannino and L. Ambrosio, "Effect of citric acid crosslinking cellulose-based hydrogels on osteogenic differentiation", J. Biomed. Mater. Res. Part A 103A (2015) 2045.
  10. I.C. Carvalho and H.S. Mansur, "Engineered 3D-scaffolds of photocrosslinked chitosan-gelatin hydrogel hybrids for chronic wound dressings and regeneration", Mater. Sci. Eng. C 78 (2017) 690. https://doi.org/10.1016/j.msec.2017.04.126
  11. S. Han and H. You, "Wound coverage using advanced technology in Korea", J. Korean Med. Assoc. 54 (2011) 594. https://doi.org/10.5124/jkma.2011.54.6.594
  12. H. Jeong, D.Y. Lee, D.H. Yang and Y. Song, "Mechanical and cell-adhesive properties of gelatin/polyvinyl alcohol hydrogels and their application in wound dressing", Macromol. Res. 30(4) (2022) 223. https://doi.org/10.1007/s13233-022-0027-7
  13. H. Jeong, J. Rho, J. Shin, D.Y. Lee, T. Hwang and K.J. Kim, "Mechanical properties and cytotoxicity of PLA/ PCL scaffolds", Biomed. Eng. Lett. 8 (2018) 267. https://doi.org/10.1007/s13534-018-0065-4
  14. H. Lee, D.Y. Lee, Y. Song and B. Kim, "Poly(ε-caprolactone) microcapsule with encapsulated nifedipine prepared by magnetic stirrer", J. Biomed. Eng. Res. 40 (2019) 7. https://doi.org/10.9718/JBER.2019.40.1.7
  15. B. Seol, J. Shin, G. Oh, D.Y. Lee and M. Lee, "Characteristics of PU/PEG hybrid scaffolds prepared by electrospinning", J. Biomed. Eng. Res. 38 (2017) 248. https://doi.org/10.9718/JBER.2017.38.5.248
  16. E.M. Ahmed, "Hydrogel: preparation, characterization, and applications: a review", J. Adv. Res. 6 (2015) 105. https://doi.org/10.1016/j.jare.2013.07.006
  17. S. Kim, H. Lim, S. Kim and D.Y. Lee, "Effect of PVA concentration on strength and cell growth behavior of PVA/gelatin hydrogels for wound dressing", J. Biomed. Eng. Res. 41 (2020) 1. https://doi.org/10.9718/jber.2020.41.1.1
  18. H. Lim, J. Shin, D.Y. Lee, B. Kim and Y. Song, "Drug delivery behavior of PCL and PCL/PEG microcapsules prepared by high-speed agitator and syringe pump", Polym. (Korea) 44 (2020) 487.
  19. G. Oh, J. Rho, D.Y. Lee, M. Lee and Y. Kim, "Synthesis and characterization of electrospun PU/PCL hybrid scaffolds", Macromol. Res. 26 (2018) 48. https://doi.org/10.1007/s13233-018-6005-4
  20. D. Kim, M. Lee, D.Y. Lee and J. Han, "Mechanical properties, phase stability, and biocompatibility of (Y,Nb)-TZP/Al2O3 composite abutments for dental implant", J. Biomed. Mater. Res. 53 (2000) 438. https://doi.org/10.1002/1097-4636(2000)53:4<438::AID-JBM19>3.0.CO;2-3
  21. J. Longhao, K. Park, Y. Yoon, H.S. Kim, H.J. Kim, J.W. Choi, D.Y. Lee, H.J. Chun and D.H. Yang, "Visible light-cured antibacterial collagen hydrogel containing water-solubilized triclosan for improved wound healing", Mater. 14 (2021) 2270. https://doi.org/10.3390/ma14092270
  22. A. Eskandarinia, A. Kefayat, M. Agheb, M. Rafienia, M.A. Baghbadorani, S. Navid, K. Ebrahimpour, D. Khodabakhshi and F. Ghahremani, "A novel bilayer wound dressing composed of a dense polyurethane/propolis mem-brane and a biodegradable polycaprolactone/gelatin nanofibrous scaffold", Sci. Rep. 10 (2020) 3063. https://doi.org/10.1038/s41598-020-59931-2
  23. M. Lee, J. Kwon, J. Kim, J. Ryu, J. Seo, S. Jang, K. Kim, C. Hwang and S. Choi, "Bioactive resin-based composite with surface pre-reacted glass-ionomer filler and zwitterionic materials to prevent the formation of multi-species biofilm", Dent. Mater. 35 (2019) 1331. https://doi.org/10.1016/j.dental.2019.06.004
  24. R. Alvarez-Asencio, V. Wallqvist, M. Kjellin, M.W. Rutland, A. Camacho, N. Nordgren and G.S. Luengo, "Nanomechanical properties of human skin and introduction of a novel hair indenter", J. Mech. Behav. Biomed. Mater. 54 (2016) 185. https://doi.org/10.1016/j.jmbbm.2015.09.014
  25. M.H. Hermans, "Hydrocolloid dressing (Duoderm®) for the treatment of superficial and deep partial thickness burns", Scand. J. Plast. Reconstr. Surg. 21 (1987) 283.
  26. T.Y. Boyko, M.T. Longaker and G.P. Yang, "Review of the current management of pressure ulcers", Adv. Wound Care 7 (2018) 57. https://doi.org/10.1089/wound.2016.0697
  27. N.S. Binulai, A. Natarajan, D. Menon, V.K. Bhaskaran, U. Mony and S.V. Nair, "PCL-gelatin composite nanofibers electrospun using diluted acetic acid-ethyl acetate solvent system for stem cell-based bone tissue engineering", J. Biomater. Sci. 25 (2004) 325.