DOI QR코드

DOI QR Code

Research Trend and Engineering Approach on Extraterrestrial Soil Sampling Technology

행성 시료 채취 기술의 연구 동향과 공학적 접근법

  • Ryu, Byunghyun (Geotechnical Engineering Research Division, Korea Institute of Civil Engineering and Building Technology (KICT))
  • Received : 2022.05.17
  • Accepted : 2022.06.02
  • Published : 2022.07.01

Abstract

Planetary geotechnical investigation in charge of drilling and soil sampling is of a great importance in providing extraterrestrial geotechnical information. Extraterrestrial subsurface investigation, which includes drilling, soil sampling, and sample transportation, will be loaded in a lander or a rover. Scientists from all over the world are interested in the design and development of a drilling system with various functions due to potential applications in planetary surface exploration mission. However, it is difficult to build a fully functional drilling system in extreme environment conditions. This paper presents engineering considerations for the design and development of soil sampling including drilling and performance verification in extreme environment conditions in detail.

행성 지표에서 시추와 시료 샘플 채취는 행성의 지반 정보를 밝히는데 매우 중요한 역할을 담당한다. 행성 시추장비는 탐사용 착륙선이나 로버에 탑재되어 사용된다. 우주 탐사에서 광범위한 응용 가능성 때문에 전 세계의 과학자들은 다양한 기능의 시추장비의 설계 및 개발에 관심을 보이고 있다. 그러나 우주라는 극한 상황에서 완전한 기능을 갖춘 시추장비를 제작하는 것은 어려운 일이다. 본 논문에서는 지금까지 우주 행성의 극한환경에서 시추를 포함한 시료 채취에 관한 설계 및 제작, 샘플링 방법, 지상검증 등 포괄적인 지반조사 기술 개발 과정과 고려사항에 대해 소개하고자 한다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업)사업으로 수행되었습니다(과제번호 20220124-001, 극한건설 환경 구현 인프라 및 TRL6 이상급 극한건설 핵심기술 개발).

References

  1. Allton, J. (1989), Catalog of Apollo lunar surface geological sampling tools and containers, Prepared for NASA/JSC Solar System Exploration Division, Contract NASA 9-17900, Job Order J2-J60 pp. 5~13.
  2. Arslan, H., Batiste, S. and Sture, S. (2010), Engineering properties of lunar soil simulant JSC-1A, Journal of Aerospace Engineering, Vol. 23 pp. 70~83. https://doi.org/10.1061/(ASCE)0893-1321(2010)23:1(70)
  3. Basilevsky, A. T., Ivanov, B. A., Ivanov, A. V. and Head, J. W. (2013), Clarification of sources of material returned by Luna 24 spacecraft based on analysis of new images of the landing site taken by lunar reconnaissance orbiter, Geochemistry International, Vol. 51, pp. 456~472. https://doi.org/10.1134/S0016702913060025
  4. Backes, P., Khatib, O., Diaz-Calderon, A., Warren, J., Collins, C. and Chang, Z. (2006), Concept for coring from a low-mass rover, 2006 Aerospace Conference, IEEE, Big Sky, Montana, USA, pp. 1~10.
  5. Bierhaus, E. B., Clark, B. C., Harris, J. W., Payne, K. S., Dubisher, R. D., Wurts, D. W., Hund, R. A., Kuhns, R. M., Linn, T. M., Wood, J. L. Dworkin, J. P., Beshore, E. and Lauretta, D.S. (2018), The OSIRIS-REx spacecraft and the touch-and-go sample acquisition mechanism (TAGSAM), Space Science Reviews, Vol. 214, No. 107, pp. 1~46. https://doi.org/10.1007/s11214-017-0435-8
  6. Cohen, B., Badescu, M., Lee, H. J., Sherrit, S., Zacny, K., Paulsen, G., Beegle, L. Bao, X. (2016), Auto-Gopher-2 - Wireline Deep Sampler Driven by Percussive Piezoelectric Actuator and Rotary EM Motors, Advances in Science and Technology, Vol. 100, pp. 207~212. https://doi.org/10.4028/www.scientific.net/AST.100.207
  7. Cui, J., Hou, X., Zhao, D., Hou, Y., Quan, Q., Wu, X., Deng, Z., Jiang, S. and Tang, D. (2014), Thermal simulation and experiment of lunar drill bit in vacuum, Indonesian Journal of Electrcal Engineering Computer Science, Vol. 12, No. 6, pp. 4756~4763.
  8. Cui, J., Hou, X., Deng, Z., Pan, W. and Quan, Q. (2017), Prediction of the temperature of a drill in drilling lunar rock simulant in a vacuum, Thermal Science, Vol. 21, No. 2, pp. 989~1002. https://doi.org/10.2298/tsci141023051c
  9. Gouache, T. P., Brunskill, C., Scott, G. P., Gao, Y., Coste, P. and Gourinat, Y. (2010), Regolith simulant preparation methods for hardware testing, Planetary and Space Science, Vol. 58, pp. 1977~1984. https://doi.org/10.1016/j.pss.2010.09.021
  10. Glass, B. J., Thompson, S. and Paulsen, G. (2005), Robotic planetary drill tests, 10th International Symposium on Artificial Intelligence, JAXA, Sapporo, Japan, pp. 1~7.
  11. Hironaka, R. and Stanley, S. (2010), Lightweight low force rotary percussive coring tool for planetary applications, 40th Aerospace Mechanisms Symposium, NASA Kennedy Space Center, Florida, USA, pp. 17~30.
  12. Kleinhenz, J.E., Paulsen, G., Zacny, K. and Smith, J. (2015), Impact of drilling operationson lunar volatiles capture: Thermal vacuum tests, 8th Symposium on Space Resource Utilization, Kissimmee, Florida, USA, pp. 1~13.
  13. Laul, J. C., Papike, J. J. and Simon, S. B. (1982), The lunar regolith-comparative studies of the Apollo and Luna sites. Chemistry of soils from Apollo 17, Luna 16, 20, and 24, 12th Lunar and Planetary Science Conference, Vol. 12B, Houston, Texas, USA, pp. 371~388.
  14. Magnani, P. G., Re, E., Senese, S., Cherubini, G. and Olivieri, A. (2006), Different drill tool concepts, Acta Astronautica, Vol. 59, pp. 1014~1019. https://doi.org/10.1016/j.actaastro.2005.07.028
  15. Paulsen, G., Zacny, K., McKay, C., Shiraishi, L., Kriechbaum, K., Glass, B., Szczesiak, M., Santoro, C., Craft, J. and Malla, R. B. (2010), Rotary-percussive deep drill for planetary applications, Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments, Honolulu, Hawaii, USA, pp. 1423~1436.
  16. Paulsen, G., Zacny, K., Szczesiak, M., Santoro, C., Mellerowicz, B., Craft, J., McKay, C., Glass, B., Davila, A. and Marinova, M. (2011), Testing of a 1 meter Mars Icebreaker drill in a 3.5 meter vacuum chamber and in an Antarctic Mars analog site, AIAA Space 2011 Conference & Exposition, Long Beach, California, USA, pp. 7236~7324.
  17. Ryu, B. H., Wang, C. C. and Chang, I. H. (2018), Development and Geotechnical Engineering Properties of KLS-1 Lunar Simulant, Journal of Aerospace Engineering, Vol. 31, pp. 04017083 (1~11). https://doi.org/10.1061/(ASCE)AS.1943-5525.0000798
  18. Scott, R. F. and Roberson, F. I. (1968), Soil mechanics surface sampler: Lunar surface tests, results, and analyses, Journal of Geophysical Research, Vol. 73, No. 12, pp. 4045~4080. https://doi.org/10.1029/JB073i012p04045
  19. Shi, H., Duan, L. and Li, T. (2011), Analysis of thermal field on the process of auger drilling simulative lunar soil, Geological Science and Technology Information, Vol. 30, No. 6, pp. 138~141 (in Chinese). https://doi.org/10.3969/j.issn.1000-7849.2011.06.021
  20. Stamenkovic, V., Beegle, L., Zacny, K., Arumugam, D., Baglioni, P., Barba, N., Baross, J., Bell, M., Bhartia, R. and Blank, J. (2019), The next frontier for planetary and human exploration, Nature Astronomy, Vol. 3, pp. 116~120. https://doi.org/10.1038/s41550-018-0676-9
  21. Tang, J., Quan, Q., Jiang, S., Liang, J., Lu, X. and Yuan, F. (2017), Investigating the soil removal characteristics of flexible tube coring method for lunar exploration, Advances in Space Research, Vol. 61, No. 3, pp. 799~810. https://doi.org/10.1016/j.asr.2017.10.043
  22. Tian, Y., Tang, D., Deng, Z., Jiang, S. and Quan, Q. (2015), Drilling power consumption and soil conveying volume performances of lunar sampling auger, Chinese Journal of Mechanical Engineering, Vol. 28, pp. 451~459. https://doi.org/10.3901/CJME.2015.0301.021
  23. Zacny, K. A. and Cooper, G. A. (2005), Strategies for drilling on Mars, Journal of Geophysical Research, Vol. 1 pp. 1~10. https://doi.org/10.1029/TM001i001p00001
  24. Zacny, K. A. and Cooper, G. A. (2007), Coring basalt under Mars low pressure conditions, International Journal of Mars Science and Exploration, Vol. 3, pp. 1~11.
  25. Zacny, K., Bar-Cohen, Y., Brennan, M., Briggs, G., Cooper, G., Davis, K., Dolgin, B., Glaser, D., Glass, B. and Gorevan, S. (2008), Drilling systems for extraterrestrial subsurface exploration, Astrobiology, Vol. 8, pp. 665~706. https://doi.org/10.1089/ast.2007.0179
  26. Zacny, K., Bartlett, P., Davis, K., Glaser, D., Gorevan, S. and the CRUX Project Team (2006), Test results of core drilling in simulated ice-bound lunar regolith for the subsurface access system of the Construction & Resource Utilization eXplorer, Earth & Space 2006, League City/Houston, Texas, USA, pp. 1~8.
  27. Zacny, K., Paulsen, G., Szczesiak, M., Craft, J., Chu, P., McKay, C., Glass, B., Davila, A., Marinova, M., Pollard, W. and Jackson, W. (2012), LunarVader: Testing of a 1 meter lunar drill in a 3.5 meter vacuum chamber and in the Antarctic lunar analog site, Journal of Aerospace Engineering, pp. 1~9.
  28. Zacny, K. and Cooper, G. (2006), Considerations constraints and strategies for drilling on Mars, Planetary and Space Science, Vol. 54, No. 4, pp. 45~356. https://doi.org/10.1016/j.pss.2005.08.007
  29. Zacny, K., Paulsen, G. and Szczesiak, M. (2011), Challenges and methods of drilling on the Moon and Mars, 2011 Aerospace Conference, IEEE, Big Sky, Montana, USA, pp. 1~9.
  30. Zacny, K. and Cooper, G. (2007), Coring basalt rock under simulated Martian atmospheric conditions, Mars, Vol. 3, pp. 1~11. https://doi.org/10.1555/mars.2007.0001
  31. Zacny, K., Quayle, M., McFadden, M., Neugebauer, A., Huang, K. and Cooper, G. (2002), A novel method for cuttings removal from holes during percussive drilling on Mars, Revolutionary Aerospace Systems Concepts-Academic Linkage, Cocoa Beach, Florida, USA, pp. 107~121.
  32. Zacny, K., Quayle, M., McFadden, M., Neugebauer, A., Huang, K. and Cooper, G. (2002), A novel method for cuttings removal from holes during percussive drilling on Mars, Revolutionary Aerospace Systems Concepts-Academic Linkage, Cocoa Beach, Florida, USA, pp. 107~121.
  33. Zhang, T., Ding, X., Liu, S., Xu, K. and Guan, Y. (2019), Experimental technique for the measurement of temperature generated in deep lunar regolith drilling, International Journal of Heat and Mass Transfer, Vol. 129, pp. 671~680. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.015
  34. Zheng, Y., Wang, S., Ouyang, Z., Zou, Y., Liu, J., Li, C., Li, X. and Feng, J. (2009), CAS-1 lunar soil simulant, Advances in Space Research, Vol. 43, pp. 448~454. https://doi.org/10.1016/j.asr.2008.07.006
  35. Zhao, D., Tang, D., Hou, X., Jiang, S. and Deng, Z. (2016), Soil chip convey of lunar subsurface auger drill, Advances in Space Research., Vol. 57, pp. 2196~2203. https://doi.org/10.1016/j.asr.2016.02.027
  36. Zhang, T., Zhang, Y., Xu, K., Ding, X., Wei, H., Chao, C., Wang, B. and Wang, B. (2021), Robotic drilling tests in simulated lunar regolith environment, Journal of Field Robotics, Vol. 38, pp. 1011~1035. https://doi.org/10.1002/rob.22018
  37. Zhang, T., Chao, C., Yao, Z., Xu, K., Zhang, W., D ing, X., Liu, S., Zhao, Z., An, Y., Wang, B., Yu, S., Wang, B. and Chen, H. (2021), The technology of lunar regolith environment construction on Earth, Acta Astronautica, Vol. 178, pp. 216~232. https://doi.org/10.1016/j.actaastro.2020.08.039
  38. Zhang, T., Xu, K., Yao, Z., Ding, X., Zhao, Z., Hou, X., Pang, Y., Lai, X., Zhang, W., Liu, S. and Deng, J. (2019), The progress of extraterrestrial regolith-sampling robots, Nature Astronomy, Vol. 3, pp. 487~497. https://doi.org/10.1038/s41550-019-0804-1
  39. Zhang, T. and Ding, X. (2017), Drilling forces model for lunar regolith exploration and experimental validation, Acta Astronautica, Vol. 131, pp. 190~203. https://doi.org/10.1016/j.actaastro.2016.11.035