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A GEOMETRIC APPROACH TO TIMELIKE FLOWS IN

TERMS OF ANHOLONOMIC COORDINATES

Ayşe Yavuz∗ and Melek Erdoğdu

Abstract. This paper is devoted to the geometry of vector fields and

timelike flows in terms of anholonomic coordinates in three dimensional

Lorentzian space. We discuss eight parameters which are related by three
partial differential equations. Then, it is seen that the curl of tangent

vector field does not include any component in the direction of principal

normal vector field. This implies the existence of a surface which contains
both s− lines and b− lines. Moreover, we examine a normal congruence

of timelike surfaces containing the s − lines and b − lines. Consider-

ing the compatibility conditions, we obtain the Gauss-Mainardi-Codazzi
equations for this normal congruence of timelike surfaces in the case of

the abnormality of normal vector field is zero. Intrinsic geometric prop-

erties of these normal congruence of timelike surfaces are obtained. We
have dealt with important results on these geometric properties.

1. Introduction

Differential geometry of surfaces deals with the smooth surfaces, which in-
cludes a variety of different structures, usually a Riemann metric. Mostly,
surfaces have been investigated from two mainly perspectives. The first one is
extrinsically that is relating to their embedding in Euclidean or non-Euclidean
space. The second one is intrinsically which is reflecting their properties de-
termined by the distance within the surface as measured along curves on the
surface. The most well known concepts investigated is the Gaussian curvature
which is first introduced by Carl Friedrich Gauss [4, 5, 6]. Carl Friedrich Gauss
proved that curvature was an intrinsic property of a surface, independent of
its isometric embedding in Euclidean space. Moreover Gauss discussed the
properties which are obtained by the geodesic distances between points on the
surface independently of the particular way in which the surface is embedding
in the Euclidean space.
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260 Ayşe Yavuz and Melek Erdoğdu

We are familiar with the concept of curves lying on a surface by investigating
intrinsic property of surfaces. From this point of view, it is the most preferred
way of examining the local differential geometric structure of the curve. In
many studies dealing with differential geometric properties of curves, some
methods and tools of differential calculus are used. This review makes use
of the well-known Frenet-Serret frame {−→t ,−→n ,

−→
b }. Analyzing the geometric

structures of curves with the help of vector analysis is very important in this
context. Considering that σ = σ(s, n, b) is a space curve in three dimensional
Euclidean space, where s, n and b are the distance along s − lines, n − lines
and b − lines, respectively. The main object is the system obtaining by the

directional derivatives of moving frame {−→t ,−→n ,
−→
b } which is deeply discussed

in [10]. The quantities, the normal deformations of the vector-tube in the

directions −→n and
−→
b ,

βns = g(−→n ,
∂

∂n

−→
t ), βbs = g(

−→
b ,

∂

∂n

−→
t )

are firstly introduced in [1], respectively.
Among the non-Euclidean geometries, Lorentzian geometry has the most

well known applications [16, 2, 17, 14, 18, 9, 3]. Then, Lorentzian geometry is
a very common research area of differential geometry with physical problems on
integrable systems, soliton theory, fluid dynamics, field theories, etc. [13, 10, 11,
12]. Moreover, Lorentzian geometry has been the mathematical theory which
is used by general relativity. Since Lorentz-Minkowski spacetime was extended
to a curved spacetime by A. Einstein in order to model nonzero gravitational
fields, Lorentzian geometry has been the mathematical theory which is used
by general relativity. This situation was a great incentive for the development
and advance of new techniques in the study of cosmological models more and
more adapted to the physical reality.

Our main aim with this paper is to give an extraordinary view of the time-
like curve flow on Lorentzian space. Let us introduce the metric for three
dimensional Lorentzian space

gL(
−→x ,−→y ) = ⟨−→x ,−→y ⟩L = −x1y1 + x2y2 + x3y3

where −→x , −→y ∈ R3. From now on, we denote Euclidean space equipped with
Lorentzian metric by E3

1. In section two, we investigate the three dimensional
vector field and the differential geometric aspects of curvature and torsion of
vector lines by means of anholonomic coordinates. Important examples of
anholonomic coordinates are the orthogonal frames constructed from a metric
on a manifold, the null frames used in general relativity, the left (or right)
invariant vector fields on a Lie group, the moving frames adapted to a free

group action on a manifold. We describe Frenet Serret frame {−→t ,−→n ,
−→
b } of

given a timelike space curve in E3
1 in terms of anholonomic coordinates which

includes eight parameters, related by three partial differential equations. We
prove that the curl of tangent vector field does not include any component in the
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direction of principal normal vector field. This shows that there exists a surface
which contains both s− lines and b− lines. Therefore, description of a normal
congruence of timelike surfaces containing the s− lines and b− lines is given
in the last section. Intrinsic geometric properties of this normal congruence of
timelike surfaces are obtained. We have dealt with important results on these
geometric properties.

2. Geometric Constraints on Timelike Space Curve in Three Di-
mensional Lorentzian Space

In this section, the formulas, which will be used to investigate the three
dimensional vector field and the differential geometric aspects of curvature and
torsion of vector lines, are given by means of anholonomic coordinates. In this
context, we consider that σ = σ(s, n, b) is a given timelike space curve lying in
three dimensional Lorentzian space. As known, s denotes the distance along
s− lines of the curve in tangential direction so that the unit timelike tangent
vector of s− lines is defined by

−→
t =

∂σ

∂s
.

Then the distance along n− lines of the curve σ in principal normal direction
is denoted by n. This means that the unit spacelike tangent vector of n− lines
is defined by

−→n =
∂σ

∂n
.

Moreover, b denotes the distance along b − lines of the curve σ in binormal
direction. So that the unit spacelike tangent vector of b− lines is defined by

−→
b =

∂σ

∂b

[7, 8]. Therefore, the moving trihedron of orthonormal unit vectors {−→t ,−→n ,
−→
b }

provides a platform for investigating intrinsic features of the curve σ, where
−→
t is the tangential vector, −→n is the principal normal vector, and

−→
b is the

binormal vector of the curve σ. To explain the intrinsic differential geometric
structure of a timelike curve in three-dimensional Lorentzian space, it is needed
to know the arc length on the curve, curvature and torsion which are two
independent parameters. On the other hand, intrinsic description of a vector
field is more complicated in three-dimensional Lorentzian space. The existence

of a field of basis vectors such as {−→t ,−→n ,
−→
b } to vector lines in three-dimensional

Lorentzian space does not imply the existence of a corresponding coordinate
system in general. But as is known that a three-dimensional vector field can be
described in terms of anholonomic coordinates which includes eight parameters,
related by three partial differential equations [15]. The following gives the

aforementioned description for the Frenet Serret frame {−→t ,−→n ,
−→
b } of given
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a timelike space curve σ = σ(s, n, b) in three dimensional Lorentzian space.
These relations are also called extended Frenet Serret formulas.

Let σ = σ(s, n, b) be a timelike space curve lying in three dimensional
Lorentzian space. Directional derivative with respect to arclength parameter

of the moving trihedron of orthonormal unit vectors {−→t ,−→n ,
−→
b } is given in the

following form:

(1)
∂

∂s


−→
t

−→n
−→
b

 =


0 κ 0

κ 0 τ

0 −τ 0




−→
t

−→n
−→
b


which is derived directly from Frenet Serret equation for unit speed timelike
curve. We know that for i = 1, 2, 3 there exist smooth functions; αi and βi

such that

∂

∂n


−→
t

−→n
−→
b

 =


0 α1 α2

α1 0 α3

α2 −α3 0




−→
t

−→n
−→
b

 ,

∂

∂b


−→
t

−→n
−→
b

 =


0 β1 β2

β1 0 β3

β2 −β3 0




−→
t

−→n
−→
b

 .

First of all, we have

α1 =

〈
∂
−→
t

∂n
,−→n

〉
L

= ξns, β2 =

〈
∂
−→
t

∂b
,
−→
b

〉
L

= ξbs

by our assumptions. Then, other geometric quantities are computed by the
vector analysis formulae in the following manner. We obtain the followings:

div
−→
t =

〈−→
t , κ−→n

〉
L
+
〈−→n , ξns

−→n + α2
−→
b
〉
L
+

〈−→
b , β1

−→n + ξbs
−→
b
〉
L
= ξns + β1,

div−→n =
〈−→
t , κ

−→
t + τ

−→
b
〉
L
+
〈−→n , ξns

−→
t + α3

−→
b
〉
L
+

〈−→
b , β1

−→
t + β3

−→
b
〉
L

= −κ+ β3,

div
−→
b =

〈−→
t ,−τ−→n

〉
L
+
〈−→n , α2

−→
t − α3

−→n
〉
L
+

〈−→
b , ξbs

−→
t − β3

−→n
〉
L
= −α3.

Thus we obtain
β3 = div−→n + κ, α3 = −div b.

On the other hand, we also obtain

curl
−→
t =

−→
t ×L (κ−→n ) +−→n ×L (ξns

−→n + α2
−→
b ) +

−→
b ×L (β1

−→n + ξbs
−→
b )

= κ
−→
b − α2

−→
t + β1

−→
t = (β1 − α2)

−→
t + κ

−→
b ,
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curl−→n =
−→
t ×L (κ

−→
t + τ

−→
b ) +−→n ×L (ξns

−→
t − div

−→
b
−→
b )

+
−→
b ×L (β1

−→
t + (div−→n + κ)

−→
b )

= τ−→n − ξns
−→
b + div b

−→
t − β1

−→n = div
−→
b
−→
t + (τ − β1)

−→n − ξns
−→
b

and

curl
−→
b =

−→
t ×L (−τ−→n ) +−→n ×L (α2

−→
t + div

−→
b −→n )

+
−→
b ×L (ξbs

−→
t − (div−→n + κ)−→n )

= −τ
−→
b − α2

−→
b − ξbs

−→n − (div−→n + κ)
−→
t

= −(div−→n + κ)
−→
t − ξbs

−→n + (−τ − α2)
−→
b .

Therefore, we get

µs =
〈
curl

−→
t ,

−→
t
〉
L
= α2 − β1,

µn = ⟨curl−→n ,−→n ⟩L = τ − β1,

µb =
〈
curl

−→
b ,

−→
b
〉
L
= −τ − α2.

This implies

β1 = τ − µn, α2 = −τ − µb.

Finally, if we substitute the obtained values of the smooth functions; αi and βi

for i = 1, 2, 3, then we get

∂

∂n


−→
t

−→n
−→
b

 =


0 ξns −τ − µb

ξns 0 −div b

−τ − µb div b 0




−→
t

−→n
−→
b

 ,

∂

∂b


−→
t

−→n
−→
b

 =


0 τ − µn ξbs

τ − µn 0 div−→n + κ

ξbs −(div−→n + κ) 0




−→
t

−→n
−→
b

 ,(2)

where

ξns =

〈
∂
−→
t

∂n
,−→n

〉
L

, ξbs =

〈
∂
−→
t

∂b
,
−→
b

〉
L

are the normal deformations of the vector-tube in the directions −→n and
−→
b ,

respectively. Here κ = κ(s, n, b) is the curvature function and τ = τ(s, n, b) is
the torsion function of the unit speed timelike curve σ = σ(s, n, b).

As a result, a relationship between abnormalities of
−→
t ,−→n and

−→
b is obtained

as follows:

µs + τ =
1

2
(µs + µn − µb) .
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This relation shows that important results involving the Dupin theorem which
states that in a triply orthogonal coordinate system all coordinate surfaces
intersect along common curvature lines. We also see that

curl
−→
t = −µs

−→
t + κ

−→
b .

This formula yields many interesting results, which we will discuss in the next

sections. Since curl
−→
t does not include any component in the direction of

principal normal −→n , then there exists a surface which contains both s− lines
and b− lines. This idea will be the most important motivation of last section
of the paper.

Now, the identity, curl grad f = 0 yields

curl grad f

=
−→
t ×L (

∂
−→
t

∂s

∂f

∂s
+
−→
t
∂2f

∂s2
+

∂−→n
∂s

∂f

∂n
+−→n ∂2f

∂s∂n
+

∂
−→
b

∂s

∂f

∂b
+

−→
b

∂2f

∂s∂b
)

+−→n ×L (
∂
−→
t

∂n

∂f

∂s
+
−→
t

∂2f

∂n∂s
+

∂−→n
∂n

∂f

∂n
+−→n ∂2f

∂n2
+

∂
−→
b

∂n

∂f

∂b
+

−→
b

∂2f

∂n∂b
)

+
−→
b ×L (

∂
−→
t

∂b

∂f

∂s
+
−→
t

∂2f

∂b∂s
+

∂−→n
∂n

∂f

∂n
+−→n ∂2f

∂b∂n
+

∂
−→
b

∂b

∂f

∂b
+

−→
b
∂2f

∂b2
)

=
∂f

∂s
curl

−→
t +

∂f

∂n
curl−→n +

∂f

∂b
curl

−→
b

+
−→
t ×L (

−→
t
∂2f

∂s2
+−→n ∂2f

∂s∂n
+
−→
b

∂2f

∂s∂b
)

+−→n ×L (
−→
t

∂2f

∂n∂s
+−→n ∂2f

∂n2
+
−→
b

∂2f

∂n∂b
)

+
−→
b ×L (

−→
t

∂2f

∂b∂s
+−→n ∂2f

∂b∂n
+
−→
b
∂2f

∂b2
),

curl grad f =
∂f

∂s
curl

−→
t +

∂f

∂n
curl−→n +

∂f

∂b
curl

−→
b + (

∂2f

∂b∂n
− ∂2f

∂n∂b
)
−→
t

+ (
∂2f

∂s∂b
− ∂2f

∂b∂s
)−→n + (

∂2f

∂s∂n
− ∂2f

∂n∂s
) =

−→
0 .
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By using of obtained relations, we get

−→
0 =

∂f

∂s
[−µs

−→
t + κ

−→
b ] +

∂f

∂n
[div

−→
b
−→
t + µn

−→n − ξns
−→
b ]

+
∂f

∂b
[(div−→n + κ)

−→
t − ξbs

−→n + µb
−→
b ]

+ (
∂2f

∂b∂n
− ∂2f

∂n∂b
)
−→
t + (

∂2f

∂s∂b
− ∂2f

∂b∂s
)−→n + (

∂2f

∂s∂n
− ∂2f

∂n∂s
)
−→
b ,

−→
0 = (

∂2f

∂b∂n
− ∂2f

∂n∂b
− ∂f

∂s
µs +

∂f

∂n
div

−→
b +

∂f

∂b
(div−→n + κ))

−→
t

+ (
∂2f

∂s∂b
− ∂2f

∂b∂s
+

∂f

∂n
µn − ∂f

∂b
ξbs)

−→n

+ (
∂2f

∂s∂n
− ∂2f

∂n∂s
+

∂f

∂s
κ− ∂f

∂n
ξns +

∂f

∂b
µb)

−→
b .

This gives the following relations:

∂2f

∂b∂n
− ∂2f

∂n∂b
=

∂f

∂s
µs −

∂f

∂n
div

−→
b − ∂f

∂b
(div−→n + κ),

∂2f

∂s∂b
− ∂2f

∂b∂s
= −∂f

∂n
µn +

∂f

∂b
ξbs,

∂2f

∂s∂n
− ∂2f

∂n∂s
= −∂f

∂s
κ+

∂f

∂n
ξns −

∂f

∂b
µb.

Therefore, we see that the second-order mixed intrinsic derivatives do not com-
mute in general. That is the quantities s, n and b represent anholonomic
coordinates. The following nine conditions on the eight geometric parameters

κ, τ, µs, µb, div
−→n , div

−→
b , ξns, ξbs occurring in the intrinsic representations

of grad
−→
t , grad−→n and grad

−→
b can be given by the compatibility of the linear

system

∂ξns
∂b

+
∂(µn − τ)

∂n
= [−(µb + τ)κµs − (τ − µn)](div

−→n + κ) + (ξbs − ξns) div
−→
b ,

∂(µb + τ)

∂b
+

∂ξbs
∂n

= (ξns + ξbs)(div
−→n + κ) + (−µb − µn) div

−→
b ,

(3)
∂(τ − µn)

∂s
− ∂κ

∂b
= −ξnsµn + ξbs(2τ − µn),
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(4)
∂ξbs
∂s

= (µb + 2τ)µn + ξ2bs − τ2 + κ(div−→n + κ),

∂ξns
∂s

− ∂κ

∂n
= −(2µb + τ)τ − κ2 + ξ2ns + µnµb,

∂(µb + τ)

∂s
= κdiv

−→
b + (µb + 2τ)ξns + ξbsµb,

∂ div
−→
b

∂s
+

∂τ

∂n
= div

−→
b ξns + (div−→n + κ)µb + (µb + 2τ)κ,

∂ div
−→
b

∂b
+

∂(div−→n + κ)

∂n
= ξbsξns + (µb + τ) (τ − µn)− (div

−→
b )2

− (div−→n + κ)2 − µsτ,

(5)
∂(div−→n + κ)

∂s
− ∂τ

∂b
= (div−→n + 2κ)ξbs + div

−→
b µn.

3. Normal Congruence of Timelike Surfaces Containing s − lines
and b− lines

There exists a normal congruence of surfaces containing the s − lines and
b− lines if and only if the abnormality of −→n is zero, i.e.

µn = 0.

This condition represents the necessary and sufficient condition for the existence
of a one-parameter family of surfaces containing the s − lines and b − lines.
Now, we consider the compatibility conditions Equation 3, 4 and 5. In the case
of µn = 0, these equations reduces to the nonlinear system

∂τ

∂s
− ∂κ

∂b
= 2τξbs,

∂ξbs
∂s

= ξ2bs − τ2 + κ(div−→n + κ),

∂(div−→n + κ)

∂s
− ∂τ

∂b
= ξbs(div

−→n + 2κ).

which is called Gauss-Mainardi-Codazzi equations for this normal congruence of
surfaces. In the case (µn = 0) of the above foliation, there exist the constituent
surfaces Ψ. Since the unit timelike tangent vector of s − lines is defined by
−→
t = ∂σ

∂s and the unit spacelike tangent vector of b−lines is defined by
−→
b = ∂σ

∂b ,
then we get

∂Ψ

∂s
=

∂σ

∂s
=

−→
t and

∂Ψ

∂b
=

∂σ

∂b
=

−→
b .

We obtain
∂Ψ

∂s
×L

∂Ψ

∂b
=

−→
t ×L

−→
b = −→n .
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It follows that −→n is perpendicular to surface. This means that −→n parallel to the

normal vector field
−→
N of the surfaces Ψ, i.e.

−→
N = −→n . Thus, the one-parameter

family of surfaces Ψ, which contain the s − lines and b − lines, are timelike
surfaces. We know that

∂2Ψ

∂b2
=

∂
−→
b

∂b
= ξbs

−→
t − (div−→n + κ)−→n

by Equation 2. Then we obtain the geodesic curvatures of b− lines as follows:

kgb =
〈
ξbs

−→
t − (div−→n + κ)−→n ,−→n×L

−→
b
〉
L
=

〈
ξbs

−→
t − (div−→n + κ)−→n ,−−→

t
〉
L

= ξbs.

In similar manner, we get

∂2Ψ

∂s2
=

∂
−→
t

∂s
= κ−→n

by Equation 1. Thus, we get the geodesic curvatures of s− lines as follows:

kgs =
〈
κ−→n ,−→n×L

−→
t
〉
=

〈
κ−→n ,−

−→
b
〉
= 0.

This implies that s− lines are geodesics on the surfaces Ψ. Again by using the
equation

∂2Ψ

∂b2
= ξbs

−→
t − (div−→n + κ)−→n ,

we obtain the normal curvatures of b− lines as follows:

knb
=

〈
ξbs

−→
t − (div−→n + κ)−→n ,−→n

〉
L
= −(div−→n + κ).

On the other hand, the normal curvatures of s− lines are obtained as follows:

kns
= ⟨κ−→n ,−→n ⟩L = κ.

By

k2g + k2n = κ2,

we get

ξ2bs + (div−→n + κ)2 = κ2
b

where κb is the curvature function of the b− lines of one-parameter family of
surfaces Ψ. We obtain the geodesic torsion of b− lines as follows:

τgb =
〈
τ
−→
t + (div−→n + κ)

−→
b ,−−→

t
〉
L
= τ

by Equation 2. Similarly, the geodesic torsion of s− lines as follows:

τgs =
〈
κ
−→
t + τ

−→
b ,−

−→
b
〉
L
= −τ

by Equation 1. We found the coefficients of first and second fundamental forms
of one-parameter family of surfaces Ψ

I = ⟨dΨ, dΨ⟩L =
〈−→
t ds+

−→
b db,

−→
t ds+

−→
b db

〉
L
= −ds2 + db2.
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We have found that g11 = −1, g12 = 0 and g22 = 1. Since normal vector
field of one-parameter family of surfaces Ψ is equal to −→n , we find the second
fundamental form as follows:

II = ⟨dΨ, d−→n ⟩L
=

〈−→
t ds+

−→
b db, (κ

−→
t + τ

−→
b )ds+ (τ

−→
t + (div−→n + κ

−→
b )db

〉
L

= −κds2 + (div−→n + κ)db2.

We get l11 = −κ, l12 = 0 and l22 = div−→n + κ. Thus, the Gaussian and mean
of the surfaces Ψ are

K =
−κ(div−→n + κ)

−1
= κ(div−→n + κ),

H =
−(div−→n + κ)− κ

−2
=

div−→n + 2κ

2
.

If the following equality is satisfied

κ(div n+ κ) = 0,

then one-parameter family of surfaces Ψ is developable. We know that the
Gaussian curvature one-parameter family of surfaces Ψ is found as

K = κ(div−→n + κ).

From following equation

∂ξbs
∂s

= ξ2bs − τ2 + κ(div−→n + κ),

we get that

K =
∂ξbs
∂s

− ξ2bs + τ2.

If b − lines are geodesics and s − lines are plane curves, then one-parameter
family of surfaces Ψ is developable. One-parameter family of surfaces Ψ is
minimal if and only if

div−→n = −2κ.

It is easily seen that the equality

∂Ψ

∂s
×L

∂2Ψ

∂s2
=

∂Ψ

∂b
.

One-parameter family of surfaces Ψ is a NLS surface if and only if κ = 1.
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Ayşe Yavuz
Department of Mathematics and Science Education,
Necmettin Erbakan University,
Konya, 42090, Turkey.
E-mail: ayasar@erbakan.edu.tr

Melek Erdoğdu
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