Honam Mathematical J. 44 (2022), No. 2, pp. 271–280 https://doi.org/10.5831/HMJ.2022.44.2.271

GENERALIZING HARDY TYPE INEQUALITIES VIA k-RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL OPERATORS INVOLVING TWO ORDERS

BOUHARKET BENAISSA

Abstract. In this study, We have applied the right operator k-Riemann-Liouville is involving two orders α and β with a positive parameter p > 0, further, the left operator k-Riemann-Liouville is used with the negative parameter p < 0 to introduce a new version related to Hardy-type inequalities. These inequalities are given and reversed for the cases 0 and <math>p < 0. We then improved and generalized various consequences in the framework of Hardy-type fractional integral inequalities.

1. Introduction

In 2012, W.T. Sulaiman presented the following Hardy type inequality [10] (Theorem 3.1).

Let f be positive function defined on $[a,b]\subseteq (0,+\infty),$ $F(x)=\int_a^x f(t)dt.$ Then 1. For $p\geq 1,$

(1)
$$p \int_{a}^{b} \left(\frac{F(x)}{x}\right)^{p} dx \le (b-a)^{p} \int_{a}^{b} \left(\frac{f(x)}{x}\right)^{p} dx - \int_{a}^{b} (1-\frac{a}{x})^{p} f^{p}(x) dx.$$

2. For $0 ,$

(2)
$$p \int_{a}^{b} \left(\frac{F(x)}{x}\right)^{p} dx \ge (1 - \frac{a}{b})^{p} \int_{a}^{b} f(x)^{p} dx - \frac{1}{b^{p}} \int_{a}^{b} (x - a)^{p} f^{p}(x).$$

These inequalities has evoked the interest of many researchers, some generalizations variants and extensions have appeared in the literature, including Sroysang [9] has generalized some integral inequalities similar to Hardy's inequality, in [2], Benaissa gave a further generalization to this inequality, moreover, Benaissa and Benguessoum [3] presented Hardy-type inequalities via Jensen integral inequality, afterward Benaissa in [4] publicized a new version of the reverse Hardy's inequality with two parameters has presented on

Received February 5, 2022. Revised March 21, 2022. Accepted March 31, 2022.

²⁰²⁰ Mathematics Subject Classification. 26D10, 26A33, 26D15.

Key words and phrases. Hardy type inequality, $k\mbox{-Riemann-Liouville}$ operator, Fubini Theorem.

time scales and presented a new result with a negative parameter p < 0. On another side, in the fractional calculus, Z. Dahmani et all [6] given the following inequality:

(3)

$$J_{a^{+}}^{\beta} \left(\frac{\left[J_{a^{+}}^{\alpha} f(b) \right]^{p}}{g^{q}(b)} \right) \leq \frac{\Gamma(\beta + \alpha - 1)\Gamma^{1-p}(\alpha + 1)}{\Gamma(\beta)\Gamma(\alpha)(\alpha(p-1) + 1)} \\
 \times \left[(b-a)^{\alpha(p-1)+1} J_{a^{+}}^{\beta+\alpha-1} \left(\frac{f^{p}(b)}{g^{q}(b)} \right) - J_{a^{+}}^{\beta+\alpha-1} \left(\frac{f^{p}(b)}{g^{q}(b)} (b-a)^{\alpha(p-1)+1} \right) \right].$$

The right-sided k-Riemann-Liouville fractional integral operator of order $\alpha > 0$, for a continuous function f on [a, b] is defined as

(4)
$$J_{a^+}^{\alpha,k} f(x) = \frac{1}{k\Gamma_k(\alpha)} \int_a^x (x-t)^{\frac{\alpha}{k}-1} f^p(t) dt, \quad a < x \le b.$$

The left-sided k-Riemann-Liouville fractional integral operator of order $\alpha > 0$, for a continuous function f on [a, b] defined as

(5)
$$J_{b^{-}}^{\alpha,k} f(x) = \frac{1}{k\Gamma_k(\alpha)} \int_x^b (t-x)^{\frac{\alpha}{k}-1} f^p(t) dt, \quad a \le x < b, \ k > 0$$

For more details, some applications on the k-Riemann-Liouville fractional integral are demonstrated in [7].

Motivated by the above literature, in this work we introduce the left and the right k-Riemann-Liouville fractional integral with two orders to generalize inequality (3) for p > 1 and we present a new results related to Hardy type inequality for the cases 0 and <math>p < 0.

2. Main results

In this section we present our principal results.

Theorem 2.1. Let $f \ge 0$ and g > 0 on $[a,b] \subseteq [0,\infty[$ such that g is non decreasing. Then, for all p > 1, $\frac{\beta}{k} \ge 1$, $\frac{\alpha}{k} \ge 1$, we have (6)

$$\mathbf{J}_{a^{+}}^{\beta,k}\left(\frac{\left[\mathbf{J}_{a^{+}}^{\alpha,k}f(b)\right]^{p}}{g(b)}\right) \leq c$$

$$\times \left[(b-a)^{\frac{\alpha}{k}(p-1)+1} \mathcal{J}_{a^+}^{\beta+\alpha-k,k} \left(\frac{f^p(b)}{g(b)} \right) - \mathcal{J}_{a^+}^{\beta+\alpha-k,k} \left(\frac{f^p(b)}{g(b)} (b-a)^{\frac{\alpha}{k}(p-1)+1} \right) \right],$$

where $c = \frac{\Gamma_k(\beta+\alpha-k)\Gamma_k^{1-p}(\alpha+k)}{\Gamma_k(\beta)\Gamma_k(\alpha)(\alpha(p-1)+k)}.$

Proof. For p > 1, using Hölder inequality for $\frac{1}{p} + \frac{1}{p'} = 1$, we have $\left[\mathbf{J}_{a^{+}}^{\alpha,k}f(x)\right]^{p} = \left(\int_{a}^{x} \left[\frac{(x-t)^{\frac{\alpha}{k}-1}}{k\Gamma_{k}(\alpha)}\right]^{\frac{1}{p'}} \left[\frac{(x-t)^{\frac{\alpha}{k}-1}}{k\Gamma_{k}(\alpha)}\right]^{\frac{1}{p}} f(t)dt\right)^{p}$

$$\leq \frac{\Gamma_k^{1-p}(\alpha+k)}{k\Gamma_k(\alpha)}(x-a)^{\frac{\alpha}{k}(p-1)}\left(\int_a^x (x-t)^{\frac{\alpha}{k}-1}f^p(t)dt\right),$$

thus

t

$$J_{a^{+}}^{\beta,k} \left(g^{-1}(b) \left[J_{a^{+}}^{\alpha,k} f(b) \right]^{p} \right) = \frac{1}{k\Gamma_{k}(\beta)} \int_{a}^{b} (b-x)^{\frac{\beta}{k}-1} g^{-1}(x) \left[J_{a^{+}}^{\alpha,k} f(x) \right]^{p} dx$$

$$\leq \frac{\Gamma_{k}^{1-p}(\alpha+k)}{k^{2}\Gamma_{k}(\beta)\Gamma_{k}(\alpha)} \int_{a}^{b} (b-x)^{\frac{\beta}{k}-1} g^{-1}(x)(x-a)^{\frac{\alpha}{k}(p-1)} \left(\int_{a}^{x} (x-t)^{\frac{\alpha}{k}-1} f^{p}(t) dt \right) dx,$$

since g is non-decreasing function on [t, b] and by using Fubini Theorem, we obtain

$$\begin{aligned} \mathbf{J}_{a^{+}}^{\beta,k} \left(g^{-1}(b) \left[\mathbf{J}_{a^{+}}^{\alpha,k} f(b) \right]^{p} \right) &\leq \frac{\Gamma_{k}^{1-p}(\alpha+k)}{k^{2}\Gamma_{k}(\beta)\Gamma_{k}(\alpha)} \\ &\times \int_{a}^{b} (b-t)^{\frac{\beta}{k}-1} g^{-1}(t)(b-t)^{\frac{\alpha}{k}-1} f^{p}(t) \left(\int_{t}^{b} (x-a)^{\frac{\alpha}{k}(p-1)} dx \right) dt, \\ &= \frac{\Gamma_{k}^{1-p}(\alpha+k)}{k^{2}\Gamma_{k}(\beta)\Gamma_{k}(\alpha)(\frac{\alpha}{k}(p-1)+1)} \\ &\times \int_{a}^{b} (b-t)^{\frac{\beta+\alpha}{k}-2} \frac{f^{p}(t)}{g(t)} \left((b-a)^{\frac{\alpha}{k}(p-1)+1} - (t-a)^{\frac{\alpha}{k}(p-1)+1} \right) dt. \end{aligned}$$

Therefore

$$\begin{split} &\int_{a}^{b} \frac{\left[\mathbf{J}_{a+}^{\alpha} f(x)\right]^{p}}{g(x)} dx \\ &\leq \frac{\Gamma_{k}(\beta+\alpha-k)\Gamma_{k}^{1-p}(\alpha+k)}{\Gamma_{k}(\beta)\Gamma_{k}(\alpha)(\alpha(p-1)+k)} \left[\frac{(b-a)^{\frac{\alpha}{k}(p-1)+1}}{k\Gamma_{k}(\beta+\alpha-k)} \int_{a}^{b} (b-t)^{\frac{\beta+\alpha-k}{k}-1} \frac{f^{p}(t)}{g(t)} dt \\ &- \frac{1}{k\Gamma_{k}(\beta+\alpha-k)} \int_{a}^{b} (b-t)^{\frac{\beta+\alpha-k}{k}-1} \frac{f^{p}(t)}{g(t)} (t-a)^{\frac{\alpha}{k}(p-1)+1} dt \right] \\ &= \frac{\Gamma_{k}(\beta+\alpha-k)\Gamma_{k}^{1-p}(\alpha+k)}{\Gamma_{k}(\beta)\Gamma_{k}(\alpha)(\alpha(p-1)+k)} \\ &\left[(b-a)^{\frac{\alpha}{k}(p-1)+1} \mathbf{J}_{a+}^{\beta+\alpha-k} \left(\frac{f^{p}(b)}{g(b)} \right) - \mathbf{J}_{a+}^{\beta+\alpha-k} \left(\frac{f^{p}(b)}{g(b)} (b-a)^{\frac{\alpha}{k}(p-1)+1} \right) \right]. \end{split}$$

This ends the proof.

Theorem 2.2. Let $f \ge 0$ and g > 0 on $[a,b] \subseteq [0,\infty[$ such that g is non decreasing. Then, for all $0 , <math>0 < \frac{\alpha}{k} < \frac{1}{1-p}$ and $\beta + \alpha > k$, we have (7) , т*р* Г

$$\mathbf{J}_{a^+}^{\beta,k}\left(\frac{\left\lfloor\mathbf{J}_{a^+}^{\alpha,k}f(b)\right\rfloor^{\nu}}{g(b)}\right) \geq c_1$$

$$\times \left[(b-a)^{\frac{\alpha}{k}(p-1)+1} \mathbf{J}_{a^+}^{\beta+\alpha-k,k} \left(\frac{f^p(b)}{g(b)} \right) - \mathbf{J}_{a^+}^{\beta+\alpha-k,k} \left(\frac{f^p(b)}{g(b)} (b-a)^{\frac{\alpha}{k}(p-1)+1} \right) \right],$$
where $c_1 = \frac{\Gamma_k(\beta+\alpha-k)\Gamma_k^{1-p}(\alpha+k)}{\Gamma_k(\beta)\Gamma_k(\alpha)(k-\alpha(1-p))g(b)}.$

Proof. For $0 , use the reverse Hölder inequality for <math>\frac{1}{p} + \frac{1}{p'} = 1$, we

have

$$\left[\mathbf{J}_{a^+}^{\alpha,k}f(x)\right]^p \geq \frac{\Gamma_k^{1-p}(\alpha+k)}{k\Gamma_k(\alpha)}(x-a)^{\frac{\alpha}{k}(p-1)}\left(\int_a^x (x-t)^{\frac{\alpha}{k}-1}f^p(t)dt\right),$$

hence

$$\begin{aligned} \mathbf{J}_{a^{+}}^{\beta,k} \left(g^{-1}(b) \left[\mathbf{J}_{a^{+}}^{\alpha,k} f(b) \right]^{p} \right) &= \frac{1}{k\Gamma_{k}(\beta)} \int_{a}^{b} (b-x)^{\frac{\beta}{k}-1} g^{-1}(x) \left[\mathbf{J}_{a^{+}}^{\alpha,k} f(x) \right]^{p} dx \\ &\geq \frac{\Gamma_{k}^{1-p}(\alpha+k)}{k^{2}\Gamma_{k}(\beta)\Gamma_{k}(\alpha)} \int_{a}^{b} (b-x)^{\frac{\beta}{k}-1} g^{-1}(x) (x-a)^{\frac{\alpha}{k}(p-1)} \left(\int_{a}^{x} (x-t)^{\frac{\alpha}{k}-1} f^{p}(t) dt \right) dx, \end{aligned}$$

since g is non-decreasing function on [t, b] and by using Fubini Theorem, we obtain

$$\begin{split} \mathbf{J}_{a^{+}}^{\beta,k} \left(g^{-1}(b) \left[\mathbf{J}_{a^{+}}^{\alpha,k} f(b) \right]^{p} \right) \\ &\geq \frac{\Gamma_{k}^{1-p}(\alpha+k)}{k^{2} \Gamma_{k}(\beta) \Gamma_{k}(\alpha)} \\ &\times \int_{a}^{b} (b-t)^{\frac{\beta}{k}-1} g^{-1}(b)(b-t)^{\frac{\alpha}{k}-1} f^{p}(t) \left(\int_{t}^{b} (x-a)^{\frac{\alpha}{k}(p-1)} dx \right) dt, \\ &= \frac{\Gamma_{k}^{1-p}(\alpha+k)}{k^{2} \Gamma_{k}(\beta) \Gamma_{k}(\alpha) (\frac{\alpha}{k}(p-1)+1) g(b)} \\ &\times \int_{a}^{b} (b-t)^{\frac{\beta+\alpha}{k}-2} f^{p}(t) \left((b-a)^{\frac{\alpha}{k}(p-1)+1} - (t-a)^{\frac{\alpha}{k}(p-1)+1} \right) dt. \end{split}$$

274

Then
$$\begin{split} &\int_{a}^{b} \frac{\left[\mathbf{J}\frac{\alpha}{a+}f(x)\right]^{p}}{g(x)} dx \\ &\geq \frac{\Gamma_{k}(\beta+\alpha-k)\Gamma_{k}^{1-p}(\alpha+k)}{\Gamma_{k}(\beta)\Gamma_{k}(\alpha)(\alpha(p-1)+k)g(b)} \left[\frac{(b-a)\frac{\alpha}{k}(p-1)+1}{k\Gamma_{k}(\beta+\alpha-k)}\int_{a}^{b}(b-t)^{\frac{\beta+\alpha-k}{k}-1}f^{p}(t)dt \\ &- \frac{1}{k\Gamma_{k}(\beta+\alpha-k)}\int_{a}^{b}(b-t)^{\frac{\beta+\alpha-k}{k}-1}f^{p}(t)(t-a)\frac{\alpha}{k}(p-1)+1}dt \right] \\ &= \frac{\Gamma_{k}(\beta+\alpha-k)\Gamma_{k}^{1-p}(\alpha+k)}{\Gamma_{k}(\beta)\Gamma_{k}(\alpha)(\alpha(p-1)+k)g(b)} \\ &\left[(b-a)\frac{\alpha}{k}(p-1)+1}\mathbf{J}_{a+}^{\beta+\alpha-k,k}\left(f^{p}(b)\right) - \mathbf{J}_{a+}^{\beta+\alpha-k,k}\left(f^{p}(b)(b-a)\frac{\alpha}{k}(p-1)+1\right)\right]. \end{split}$$

This gives us the desired result.

Now we present a new result according the left-sided k-Riemann-Liouville fractional integral operator.

Theorem 2.3. Let $f \ge 0$ and g > 0 on $[a,b] \subseteq [0,\infty[$ such that g is non increasing. Then, for all p < 0, $\frac{1}{1-p} < \frac{\alpha}{k}$ and $\alpha + \beta > k$, we have (8)

$$\mathbf{J}_{b^{-}}^{\beta,k} \left(\frac{\left[\mathbf{J}_{b^{-}}^{\alpha,k} f(a) \right]^{p}}{g(a)} \right) \leq c_{2} \\ \times \left[\mathbf{J}_{b^{-}}^{\beta+\alpha-k,k} \left(f^{p}(a)(b-a)^{\frac{\alpha}{k}(p-1)+1} \right) - (b-a)^{\frac{\alpha}{k}(p-1)+1} \mathbf{J}_{b^{-}}^{\beta+\alpha-k,k} \left(f^{p}(a) \right) \right],$$

where $c_2 = \frac{\Gamma_k(\beta + \alpha - k)\Gamma_k^{1-p}(\alpha + k)}{\Gamma_k(\beta)\Gamma_k(\alpha)(\alpha(1-p) - k)g(a)}.$

Proof. For p < 0, using the reverse Hölder inequality [5] for $\frac{1}{p} + \frac{1}{p'} = 1$, we have

$$\begin{aligned} \mathbf{J}_{b^{-}}^{\alpha,k}f(x) &= \int_{x}^{b} \left[\frac{(t-x)^{\frac{\alpha}{k}-1}}{k\Gamma_{k}(\alpha)}\right]^{\frac{1}{p'}} \left[\frac{(t-x)^{\frac{\alpha}{k}-1}}{k\Gamma_{k}(\alpha)}\right]^{\frac{1}{p}}f(t)dt \\ &\geq \left(\frac{1}{\Gamma_{k}(\alpha+k)}(b-x)^{\frac{\alpha}{k}}\right)^{\frac{1}{p'}} \left(\frac{1}{k\Gamma_{k}(\alpha)}\int_{x}^{b}(t-x)^{\frac{\alpha}{k}-1}f^{p}(t),dt\right)^{\frac{1}{p}} \end{aligned}$$

since p < 0, we get

$$J_{b^{-}}^{\beta,k} \left(\frac{\left[J_{b^{-}}^{\alpha,k} f(a) \right]^{p}}{g(a)} \right) = \frac{1}{k\Gamma_{k}(\beta)} \int_{a}^{b} (x-a)^{\frac{\beta}{k}-1} g^{-1}(x) \left[J_{b^{-}}^{\alpha,k} f(x) \right]^{p} dx$$
$$\leq \frac{\Gamma_{k}^{1-p}(\alpha+k)}{k^{2}\Gamma_{k}(\beta)\Gamma_{k}(\alpha)} \int_{a}^{b} (x-a)^{\frac{\beta}{k}-1} g^{-1}(x) (b-x)^{\frac{\alpha}{k}(p-1)} \left(\int_{x}^{b} (t-x)^{\frac{\alpha}{k}-1} f^{p}(t) dt \right) dx.$$

Since g is a non-increasing function on $\left[a,t\right]$ and by using Fubini Theorem, we get

$$\begin{split} & \mathcal{J}_{b^{-}}^{\beta,k} \left(\frac{\left[\mathcal{J}_{b^{-}}^{\alpha,k} f(a) \right]^{p}}{g(a)} \right) \\ & \leq \frac{\Gamma_{k}^{1-p}(\alpha+k)}{k^{2}\Gamma_{k}(\beta)\Gamma_{k}(\alpha)} \int_{a}^{b} (t-a)^{\frac{\beta}{k}-1} g^{-1}(a)(t-a)^{\frac{\alpha}{k}-1} f^{p}(t) \left(\int_{a}^{t} (b-x)^{\frac{\alpha}{k}(p-1)} dx \right) dt \\ & = \frac{g^{-1}(a)\Gamma_{k}^{1-p}(\alpha+k)}{k\Gamma_{k}(\beta)\Gamma_{k}(\alpha)(\alpha(1-p)-k)} \\ & \times \int_{a}^{b} f^{p}(t)(t-a)^{\frac{\alpha+\beta}{k}-2} \left((b-t)^{\frac{\alpha}{k}(p-1)+1} - (b-a)^{\frac{\alpha}{k}(p-1)+1} \right) dt, \end{split}$$

this gives us that (9)

$$\begin{split} \mathbf{J}_{b^-}^{\beta,k} \left(\frac{\left[\mathbf{J}_{b^-}^{\alpha,k} f(a) \right]^p}{g(a)} \right) \\ &\leq \frac{\Gamma_k(\beta + \alpha - k)\Gamma_k^{1-p}(\alpha + k)}{\Gamma_k(\beta)\Gamma_k(\alpha)(\alpha(1-p) - k)g(a)} \left[\int_a^b \frac{(t-a)^{\frac{\beta+\alpha-k}{k}-1}}{k\Gamma_k(\beta + \alpha - k)} f^p(t)(b-t)^{\frac{\alpha}{k}(p-1)+1} dt \right. \\ &\left. - \frac{(b-a)^{\frac{\alpha}{k}(p-1)+1}}{\Gamma_k(\beta + \alpha - k)} \int_a^b (t-a)^{\frac{\beta+\alpha-k}{k}-1} f^p(t) dt \right] \\ &= \frac{\Gamma_k(\beta + \alpha - k)\Gamma_k^{1-p}(\alpha + k)}{\Gamma_k(\beta)\Gamma_k(\alpha)(\alpha(1-p) - k)g(a)} \\ &\times \left[\mathbf{J}_{b^-}^{\beta+\alpha-k,k} \left(f^p(a)(b-a)^{\frac{\alpha}{k}(p-1)+1} \right) - (b-a)^{\frac{\alpha}{k}(p-1)+1} \mathbf{J}_{b^-}^{\beta+\alpha-k,k} \left(f^p(a)) \right]. \end{split}$$
That completes our proof.

3. Applications

Taking k = 1 in the above Theorem 2.1, Theorem 2.2 and Theorem 2.3, we deduce the following Corollaries related to Riemann-Liouville inequalities with two orders α and β .

Corollary 3.1. Let $f \ge 0$ and g > 0 on $[a, b] \subseteq [0, \infty[$ such that g is non decreasing. Then, for all p > 1, $\beta \ge 1$, $\alpha \ge 1$, we have

(10)
$$\mathbf{J}_{a^{+}}^{\beta} \left(\frac{\left[\mathbf{J}_{a^{+}}^{\alpha} f(b) \right]^{p}}{g(b)} \right) \leq c$$

$$\begin{split} & \times \left[(b-a)^{\alpha(p-1)+1} \mathbf{J}_{a^+}^{\beta+\alpha-1} \left(\frac{f^p(b)}{g(b)} \right) - \mathbf{J}_{a^+}^{\beta+\alpha-1} \left(\frac{f^p(b)}{g(b)} (b-a)^{\alpha(p-1)+1} \right) \right], \\ & \text{where } c = \frac{\Gamma(\beta+\alpha-1)\Gamma^{1-p}(\alpha+1)}{\Gamma(\beta)\Gamma(\alpha)(\alpha(p-1)+1)}. \end{split}$$

Remark 3.2. If we replace g by g^q where q > 0, we get Theorem 3 in [6].

Corollary 3.3. Let $f \ge 0$ and g > 0 on $[a, b] \subseteq [0, \infty[$ such that g is non decreasing. Then, for all $0 , <math>0 < \alpha < \frac{1}{1-p}$ and $\beta + \alpha > 1$, we have (11)

$$\begin{aligned} \mathbf{J}_{a^{+}}^{\beta} \left(\frac{\left[\mathbf{J}_{a^{+}}^{\alpha}f(b)\right]^{p}}{g(b)} \right) &\geq c_{1} \\ \times \left[(b-a)^{\alpha(p-1)+1} \mathbf{J}_{a^{+}}^{\beta+\alpha-1} \left(\frac{f^{p}(b)}{g(b)} \right) - \mathbf{J}_{a^{+}}^{\beta+\alpha-1} \left(\frac{f^{p}(b)}{g(b)} (b-a)^{alpha(p-1)+1} \right) \right], \end{aligned}$$
where $c_{1} = \frac{\Gamma(\beta+\alpha-1)\Gamma^{1-p}(\alpha+1)}{\Gamma(\beta)\Gamma(\alpha)(1-\alpha(1-p))g(b)}.$

Corollary 3.4. Let $f \ge 0$ and g > 0 on $[a,b] \subseteq [0,\infty[$ such that g is non increasing. Then, for all p < 0, $\frac{1}{1-p} < \alpha$ and $\alpha + \beta > 1$, we have

$$\mathbf{J}_{b^{-}}^{\beta}\left(\frac{\left[\mathbf{J}_{b^{-}}^{\alpha}f(a)\right]^{p}}{g(a)}\right) \leq c_{2}$$

W

$$\times \left[\mathbf{J}_{b^{-}}^{\beta+\alpha-1} \left(f^{p}(a)(b-a)^{\alpha(p-1)+1} \right) - (b-a)^{\alpha(p-1)+1} \mathbf{J}_{b^{-}}^{\beta+\alpha-1} \left(f^{p}(a) \right) \right],$$

where $c_{2} = \frac{\Gamma(\beta+\alpha-1)\Gamma^{1-p}(\alpha+1)}{\Gamma(\beta)\Gamma(\alpha)(\alpha(1-p)-1)g(a)}.$

Now, setting $\beta = k$ in the above Theorem 2.1, Theorem 2.2 and Theorem 2.3, we deduce the following Corollaries related to k-Riemann-Liouville inequalities with the order α .

Corollary 3.5. Let $f \ge 0$ and g > 0 on $[a, b] \subseteq [0, \infty[$ such that g is non decreasing. Then, for all p > 1, $\frac{\alpha}{k} \ge 1$, we have

(13)
$$\int_{a}^{b} \left(\frac{\left[J_{a^{+}}^{\alpha,k} f(x) \right]^{p}}{g(x)} dx \right) \leq c$$

$$\begin{split} & \times \left[(b-a)^{\frac{\alpha}{k}(p-1)+1} \mathbf{J}_{a^+}^{\alpha,k} \left(\frac{f^p(b)}{g(b)} \right) - \mathbf{J}_{a^+}^{\alpha,k} \left(\frac{f^p(b)}{g(b)} (b-a)^{\frac{\alpha}{k}(p-1)+1} \right) \right], \\ & \text{where } c = \frac{k \, \Gamma_k^{1-p}(\alpha+k)}{\alpha(p-1)+k}. \end{split}$$

Remark 3.6. If we replace g by g^q where q > 0, we get Theorem 3.2 in [8].

Corollary 3.7. Let $f \ge 0$ and g > 0 on $[a, b] \subseteq [0, \infty[$ such that g is non decreasing. Then, for all $0 , <math>0 < \frac{\alpha}{k} < \frac{1}{1-p}$, we have

(14)
$$\int_{a}^{b} \left(\frac{\left[J_{a^{+}}^{\alpha,k} f(x) \right]^{p}}{g(x)} dx \right) \ge c_{1}$$

$$\times \left[(b-a)^{\frac{\alpha}{k}(p-1)+1} \mathcal{J}_{a^{+}}^{\alpha,k} \left(\frac{f^{p}(b)}{g(b)} \right) - \mathcal{J}_{a^{+}}^{\alpha,k} \left(\frac{f^{p}(b)}{g(b)} (b-a)^{\frac{\alpha}{k}(p-1)+1} \right) \right],$$

where $c_1 = \frac{k \Gamma_k^{1-p}(\alpha + k)}{(k - \alpha(1-p))g(b)}$.

Corollary 3.8. Let $f \ge 0$ and g > 0 on $[a, b] \subseteq [0, \infty[$ such that g is non increasing. Then, for all p < 0, $\frac{1}{1-p} < \frac{\alpha}{k}$, we have

(15)
$$\int_{a}^{b} \left(\frac{\left[\mathbf{J}_{b^{-}}^{\alpha,k} f(x) \right]^{p}}{g(x)} \right) \leq c_{2}$$

$$\times \left[\mathbf{J}_{b^{-}}^{\alpha,k} \left(f^{p}(a)(b-a)^{\frac{\alpha}{k}(p-1)+1} \right) - (b-a)^{\frac{\alpha}{k}(p-1)+1} \mathbf{J}_{b^{-}}^{\alpha,k} \left(f^{p}(a) \right) \right]$$

where $c_2 = \frac{k \Gamma_k^{1-p}(\alpha + k)}{(\alpha(1-p) - k)g(a)}.$

- **Remark 3.9.** 1. Taking k = 1 in the Corollary 3.5, we get Theorem 3.2 in [6].
- 2. Taking k = 1 in the Corollary 3.7, then for $0 and <math>0 < \alpha < \frac{1}{1-p}$, we get the following inequality.

(16)
$$\int_{a}^{b} \frac{\left[J_{a+}^{\alpha}f(x)\right]^{p}}{g^{q}(x)} dx \geq \frac{\Gamma^{1-p}(\alpha+1)}{(\alpha(p-1)+1)g^{q}(b)} \times \left[(b-a)^{\alpha(p-1)+1}J_{a+}^{\alpha}(f^{p}(b)) - J_{a+}^{\alpha}\left(f^{p}(b)(b-a)^{\alpha(p-1)+1}\right)\right]$$

3. Setting k = 1 in the Corollary 3.8, hence for p < 0 and $\frac{1}{1-p} < \alpha$, we obtain the following inequality.

(17)
$$\int_{a}^{b} \frac{\left[J_{b-}^{\alpha}f(x)\right]^{p}}{g(x)} dx \geq \frac{\Gamma^{1-p}(\alpha+1)}{(\alpha(1-p)-1)g(a)} \times \left[J_{b-}^{\alpha}\left(f^{p}(a)(b-a)^{\alpha(p-1)+1}\right) - (b-a)^{\alpha(p-1)+1}J_{b-}^{\alpha}\left(f^{p}(a)\right)\right]$$

Inequalities (16) and (17) are a new version of Riemann-Liouville integral inequalities. Putting now $\alpha = k = 1$ in the Corollary 3.8, we obtain the following Corollary.

Corollary 3.10. Let $f \ge 0$, g > 0 on $[a, b] \subseteq [0, \infty[$ such that g is non increasing and $F(x) = \int_x^b f(t)dt$. Then, for all p < 0, we have (18)

$$-p \int_{a}^{b} \frac{F^{p}(x)}{g(x)} dx \ge \frac{1}{g(a)} \left[\int_{a}^{b} f^{p}(x)(b-x)^{p} dx - (b-a)^{p} \int_{a}^{b} f^{p}(x) dx \right].$$

Remark 3.11. The inequality (18) coincide with inequality (4.26) in [4].

4. Conclusion

We have presented some new reverse Hardy type inequalities introduced via fractional integral operators k-Riemann-Liouville involving two orders alpha and beta by using the Holder's inequality, moreover new results are obtained with the parameters 0 and <math>p < 0. We then improved and generalized various consequences in the framework of fractional Hardy-type integral inequalities, we also presented new results related to Riemann-Liouville fractional integral operators with two orders.

Acknowledgements

The author also thank the anonymous referees for their valuable comments and suggestions which lead to the final version of this paper. This work was supported by the Directorate-General for Scientific Research and Technological Development (DGRSDT)-Algeria.

References

[1] T. A. Aljaaidi, D. B. Pachpatte, M. S. Abdo, T. Botmart, H. Ahmad, M. A. Almalahi, and S. S. Redhwan., (k,μ)-Proportional Fractional Integral PolyaSzeg- and Gruss-Type Inequalities, Fractal Fract. 5 (2021), no. 172. https://doi.org/10.3390/fractalfract5040172.

- B. Benaissa, More on reverses of Minkowski's inequalities and Hardy's integral inequalities, Asian-Eur. J. Math. 13 (2020), no. 3. https://doi.org/10.1142/S1793557120500643.
- B. Benaissa and A. Benguessoum, Reverses Hardy-Type Inequalities Via Jensen Integral Inequality, Math. Montisnigri. 52 (2021), no. 5. https://10.20948/mathmontis-2021-52-5.
- [4] B. Benaissa, Some Inequalities on Time Scales Similar to Reverse Hardy's Inequality, Rad. Hrvat. Akad. Znan. Umjet. Mat. Znan. (2022), Forthcoming papers (with pdf preview).
- [5] B. Benaissa, On the Reverse Minkowski's Integral Inequality, Kragujevac. J. Math. 46 (2022), no. 3, 407–416.
- [6] Zoubir Dahmani, Amina Khameli, and Karima Freha, Further generalizations on some hardy type RL-integral inequalities, Interdiscip. Math. J. 23 (2010), no. 8, 1487-1495. https://10.1080/09720502.2020.1754543.
- [7] M. Z. Sarikaya and A. Karaca, On the k-Riemann-Liouvillefractional integral and applications, Int. J. Stat. Math. 1 (2014), no. 2, 033–043.
- [8] M. Z. Sarikaya, C. C. Bilisik, and T. Tunc, On Hardy type inequalities via k-fractional integrals, TWMS J. App. Eng. Math. 10 (2020), no. 2, 443–451.
- Banyat Sroysang, A Generalization of Some Integral Inequalities Similar to Hardy's Inequality, Mathematica Aeterna. 3 (2013), no. 7, 593–596.
- [10] W. T. Sulaiman, Reverses of Minkowski's, Hölder's, and Hardy's integral inequalities, Int. J. Mod. Math. Sci. 1 (2012), no. 1, 14 –24.

Bouharket Benaissa Laboratory of Informatics and Mathematics, Faculty of Material Sciences, University of Tiaret-Algeria. E-mail: bouharket.benaissa@univ-tiaret.dz