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GENERALIZING HARDY TYPE INEQUALITIES VIA
E-RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL
OPERATORS INVOLVING TWO ORDERS

BOUHARKET BENAISSA

Abstract. In this study, We have applied the right operator k-Riemann-
Liouville is involving two orders « and 3 with a positive parameter p > 0,
further, the left operator k-Riemann-Liouville is used with the negative
parameter p < 0 to introduce a new version related to Hardy-type inequal-
ities. These inequalities are given and reversed for the cases 0 < p < 1
and p < 0. We then improved and generalized various consequences in
the framework of Hardy-type fractional integral inequalities.

1. Introduction

In 2012, W.T. Sulaiman presented the following Hardy type inequality
[10](Theorem 3.1).

Let f be positive function defined on [a, b] C (0, 4+00), F(z) = / f(t)dt. Then
1. For p > 1, ‘

) p/ab (F:(f))pdx < (b—a)”/ﬂb (ff))pdx—/ab(l— %y o ().

2. For 0 <p<1,
@ »f b (£ f))pdxz a-5r [ fapdo- L ab@c—a)pfp(x).

These inequalities has evoked the interest of many researchers, some gener-
alizations variants and extensions have appeared in the literature, including
Sroysang [9] has generalized some integral inequalities similar to Hardy’s in-
equality, in [2], Benaissa gave a further generalization to this inequality, more-
over, Benaissa and Benguessoum [3] presented Hardy-type inequalities via
Jensen integral inequality , afterward Benaissa in [4] publicized a new ver-
sion of the reverse Hardy’s inequality with two parameters has presented on
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time scales and presented a new result with a negative parameter p < 0. On
another side, in the fractional calculus, Z. Dahmani et all [6] given the following
inequality:

s ([Das®]") T +a- DI Pat)
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3)

x (b= ayeDHigfient (L0 — gl (B0 - apewn+)).

The right-sided k-Riemann-Liouville fractional integral operator of order a > 0,
for a continuous function f on [a,b] is defined as

_ 1
o kI‘k(a)

4) 12 f (@) [w—0itpom a<ass

The left-sided k-Riemann-Liouville fractional integral operator of order o > 0,
for a continuous function f on [a, b] defined as

1

G I = e

b
/(t—x)%_lfp(t)dt, a<xz<b k>0

For more details, some applications on the k-Riemann-Liouville fractional in-
tegral are demonstrated in [7].

Motivated by the above literature, in this work we introduce the left and the
right k-Riemann-Liouville fractional integral with two orders to generalize in-
equality (3) for p > 1 and we present a new results related to Hardy type
inequality for the cases 0 < p < 1 and p < 0.

2. Main results

In this section we present our principal results.

Theorem 2.1. Let f > 0 and g > 0 on [a,b] C [0,00[ such that g is non
decreasing. Then, for all p > 1, % >1, & =1, we have

(6) L
ey

Jok
ot g(b) -

« [(b _ a)%(pfl)ﬂt]firafkyk (fg(g)l;)) _ Jgiafk,k (fg(gl;) (b— a)%(,’nfl)Jrl)} :
MW(B+a— BT (a+ k)
Cr(B)Th(e)(a(p — 1) + k)

where ¢ =
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1 1
Proof. For p > 1, using Holder inequality for — + — =1, we have
p p

p (g — ) E1]Y [(p—t)E-1]7 :
@] = (/ S| ] Wt)
Lt th) oo ([ e-ntrwa).
thus
b
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S BrA)Tr(e) /:(b —2)f g (@) (z — @) F D) </;(x — t)‘ilfp(t)dt> da,

since g is non-decreasing function on [t,b] and by using Fubini Theorem, we
obtain

12 (o0 o)) < g
b b
< [e-0E gt me-nE e ( / <x—a>%<P-1>dx> i,
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Therefore
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This ends the proof. O

Theorem 2.2. Let f > 0 and g > 0 on [a,b] C [0,00[ such that g is non

decreasing. Then, for all0 <p <1,0< 7 < 1ip and 8+ a > k, we have
g p
o ([Potro)]
Jil——— ]2 a
g(b)

o e R S UL | F

Ty(B+a— k)T, P(a+k)
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where ¢ =

1 1
Proof. For 0 < p < 1, use the reverse Holder inequality for — + — =1, we
p P

have

pats) = O gre ([ pipom),

hence

1 (o )] = ml( /3) / b ) 2 1)) da
T e § AR Ly OO

since g is non-decreasing function on [t,b] and by using Fubini Theorem, we
obtain
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Then
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This gives us the desired result. O

Now we present a new result according the left-sided k-Riemann-Liouville
fractional integral operator.

Theorem 2.3. Let f > 0 and g > 0 on [a,b] C [0,00[ such that g is non
increasing. Then, for all p < 0, ﬁ < # and a + 8 > k, we have
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where ¢y =
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Proof. For p < 0, using the reverse Holder inequality [5] for — 4+ — =1, we
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since p < 0, we get
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Since g is a non-increasing function on [a,t] and by using Fubini Theorem, we
get
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That completes our proof. O
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3. Applications

Taking k£ = 1 in the above Theorem 2.1, Theorem 2.2 and Theorem 2.3, we
deduce the following Corollaries related to Riemann-Liouville inequalities with
two orders « and (3.

Corollary 3.1. Let f > 0 and g > 0 on [a,b] C [0, 00[ such that g is non
decreasing. Then, for allp > 1, 8> 1, a > 1, we have

[Je f(v)]°
T <g<b>> =c

x [(b — a)op-D+1 el (f”(ig)) — gffet (fgp(g;) (b— a)oc(pfl)ﬂ)} ’

(10)
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Remark 3.2. If we replace g by g9 where ¢ > 0, we get Theorem 3 in [6].

where ¢ =

Corollary 3.3. Let f > 0 and g > 0 on [a,b] C [0, 0] such that g is non

decreasing. Then, for all 0 < p< 1,0 < a < 1ip and B+ a > 1, we have
(11)
T f0)]"
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Ir(B+a—-1IPla+1)
L)) (1 — a1 = p))g(b)

Corollary 3.4. Let f > 0 and g > 0 on [a,b] C [0,00] such that g is non
increasing. Then, for all p < 0, ﬁ < a and a+ > 1, we have

where ¢ =
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where ¢y =

Now, setting § = k in the above Theorem 2.1, Theorem 2.2 and Theo-
rem 2.3, we deduce the following Corollaries related to k-Riemann-Liouville
inequalities with the order a.



278 Bouharket Benaissa

Corollary 3.5. Let f > 0 and g > 0 on [a,b] C [0,00] such that g is non
decreasing. Then, for allp > 1, & > 1, we have

o p
/ el N L

a(p— a, k P(b a, k P(b & (p—
x (0= a)FODRInE (L) gt (R0 - )R ) |
P
Wherec:k k (a+k)
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Remark 3.6. If we replace g by g? where q > 0, we get Theorem 3.2 in [8].

Corollary 3.7. Let f > 0 and g > 0 on [a,b] C [0,00[ such that g is non
decreasing. Then, for all0 <p <1,0< 7 < L we have
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Corollary 3.8. Let f > 0 and g > 0 on [a,b] C [0, 0] such that g is non
increasing. Then, for all p < 0, ﬁ < %, we have

o ([t r@)]
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Remark 3.9. 1. Taking k = 1 in the Corollary 3.5, we get Theorem 3.2
in [6].
2. Tagﬂ']ng k =1 in the Corollary 3.7, then for 0 < p <1 and 0 < a < ﬁ,
we get the following inequality.
/b Uaf@]” o T'Pat D)
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(16)
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3. Setting k = 1 in the Corollary 3.8, hence for p < 0 and ﬁ < a, we

obtain the following inequality.

I f@)]” (o +1)
/a 0@ P el —p) - Dla)

x [15- (£7(a) (b — a)*@=DF1) — (b — a) =Dy (f7(a)].

Inequalities (16) and (17) are a new version of Riemann-Liouville integral
inequalities. Putting now a = k = 1 in the Corollary 3.8, we obtain the
following Corollary.

(17)

Corollary 3.10. Let f > 0,9 > 0 on [ab] C [0,00[ such that g is non
increasing and F(x / f(t)dt. Then, for all p < 0, we have

p/ablj:;(xa;)d [/ #P(z)(b— x)Pdz — (b— a) /fp ]

Remark 3.11. The inequality (18) coincide with inequality (4.26) in [4].

4. Conclusion

We have presented some new reverse Hardy type inequalities introduced via
fractional integral operators k-Riemann-Liouville involving two orders alpha
and beta by using the Holder’s inequality, moreover new results are obtained
with the parameters 0 < p < 1 and p < 0. We then improved and general-
ized various consequences in the framework of fractional Hardy-type integral
inequalities, we also presented new results related to Riemann-Liouville frac-
tional integral operators with two orders.
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