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GENERALIZING HARDY TYPE INEQUALITIES VIA

k-RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL

OPERATORS INVOLVING TWO ORDERS

Bouharket Benaissa

Abstract. In this study, We have applied the right operator k-Riemann-

Liouville is involving two orders α and β with a positive parameter p > 0,
further, the left operator k-Riemann-Liouville is used with the negative

parameter p < 0 to introduce a new version related to Hardy-type inequal-

ities. These inequalities are given and reversed for the cases 0 < p < 1
and p < 0. We then improved and generalized various consequences in

the framework of Hardy-type fractional integral inequalities.

1. Introduction

In 2012, W.T. Sulaiman presented the following Hardy type inequality
[10](Theorem 3.1).

Let f be positive function defined on [a, b] ⊆ (0,+∞), F (x) =

∫ x

a

f(t)dt. Then

1. For p ≥ 1,

(1) p

∫ b

a

(
F (x)

x

)p

dx ≤ (b− a)p
∫ b

a

(
f(x)

x

)p

dx−
∫ b

a

(1− a

x
)pfp(x)dx.

2. For 0 < p < 1,

(2) p

∫ b

a

(
F (x)

x

)p

dx ≥ (1− a

b
)p
∫ b

a

f(x)pdx− 1

bp

∫ b

a

(x− a)pfp(x).

These inequalities has evoked the interest of many researchers, some gener-
alizations variants and extensions have appeared in the literature, including
Sroysang [9] has generalized some integral inequalities similar to Hardy’s in-
equality, in [2], Benaissa gave a further generalization to this inequality, more-
over, Benaissa and Benguessoum [3] presented Hardy-type inequalities via
Jensen integral inequality , afterward Benaissa in [4] publicized a new ver-
sion of the reverse Hardy’s inequality with two parameters has presented on
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time scales and presented a new result with a negative parameter p < 0. On
another side, in the fractional calculus, Z. Dahmani et all [6] given the following
inequality:

(3)

J β
a+

([
J α
a+f(b)

]p
gq(b)

)
≤ Γ(β + α− 1)Γ1−p(α+ 1)

Γ(β)Γ(α)(α(p− 1) + 1)

×
[
(b− a)α(p−1)+1Jβ+α−1

a+

(
fp(b)
gq(b)

)
− Jβ+α−1

a+

(
fp(b)
gq(b) (b− a)α(p−1)+1

)]
.

The right-sided k-Riemann-Liouville fractional integral operator of order α > 0,
for a continuous function f on [a, b] is defined as

(4) J α,k
a+ f(x) =

1

kΓk(α)

∫ x

a

(x− t)
α
k −1fp(t)dt, a < x ≤ b.

The left-sided k-Riemann-Liouville fractional integral operator of order α > 0,
for a continuous function f on [a, b] defined as

(5) J α,k
b− f(x) =

1

kΓk(α)

∫ b

x

(t− x)
α
k −1fp(t)dt, a ≤ x < b, k > 0.

For more details, some applications on the k-Riemann-Liouville fractional in-
tegral are demonstrated in [7].
Motivated by the above literature, in this work we introduce the left and the
right k-Riemann-Liouville fractional integral with two orders to generalize in-
equality (3) for p > 1 and we present a new results related to Hardy type
inequality for the cases 0 < p < 1 and p < 0.

2. Main results

In this section we present our principal results.

Theorem 2.1. Let f ≥ 0 and g > 0 on [a, b] ⊆ [0,∞[ such that g is non

decreasing. Then, for all p > 1, β
k ≥ 1, α

k ≥ 1, we have
(6)

J β,k
a+


[
J α,k
a+ f(b)

]p
g(b)

 ≤ c

×
[
(b− a)

α
k (p−1)+1Jβ+α−k, k

a+

(
fp(b)
g(b)

)
− Jβ+α−k, k

a+

(
fp(b)
g(b) (b− a)

α
k (p−1)+1

)]
,

where c =
Γk(β + α− k)Γ1−p

k (α+ k)

Γk(β)Γk(α)(α(p− 1) + k)
.
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Proof. For p > 1, using Hölder inequality for
1

p
+

1

p′
= 1, we have

[
J α,k
a+ f(x)

]p
=

(∫ x

a

[
(x− t)

α
k −1

kΓk(α)

] 1
p′
[
(x− t)

α
k −1

kΓk(α)

] 1
p

f(t)dt

)p

≤
Γ1−p
k (α+ k)

kΓk(α)
(x− a)

α
k (p−1)

(∫ x

a

(x− t)
α
k −1fp(t)dt

)
,

thus

J β,k
a+

(
g−1(b)

[
J α,k
a+ f(b)

]p)
=

1

kΓk(β)

∫ b

a

(b− x)
β
k−1g−1(x)

[
Jα,ka+ f(x)

]p
dx

≤
Γ1−p
k (α+ k)

k2Γk(β)Γk(α)

∫ b

a

(b− x)
β
k−1g−1(x)(x− a)

α
k (p−1)

(∫ x

a

(x− t)
α
k −1fp(t)dt

)
dx,

since g is non-decreasing function on [t, b] and by using Fubini Theorem, we
obtain

J β,k
a+

(
g−1(b)

[
J α,k
a+ f(b)

]p)
≤

Γ1−p
k (α+ k)

k2Γk(β)Γk(α)

×
∫ b

a

(b− t)
β
k−1g−1(t)(b− t)

α
k −1fp(t)

(∫ b

t

(x− a)
α
k (p−1)dx

)
dt,

=
Γ1−p
k (α+ k)

k2Γk(β)Γk(α)(
α
k (p− 1) + 1)

×
∫ b

a

(b− t)
β+α

k −2 f
p(t)

g(t)

(
(b− a)

α
k (p−1)+1 − (t− a)

α
k (p−1)+1

)
dt.

Therefore∫ b

a

[
J α
a+f(x)

]p
g(x)

dx

≤
Γk(β + α− k)Γ1−p

k (α+ k)

Γk(β)Γk(α)(α(p− 1) + k)

[
(b− a)

α
k (p−1)+1

kΓk(β + α− k)

∫ b

a

(b− t)
β+α−k

k −1 f
p(t)

g(t)
dt

− 1

kΓk(β + α− k)

∫ b

a

(b− t)
β+α−k

k −1 f
p(t)

g(t)
(t− a)

α
k (p−1)+1dt

]

=
Γk(β + α− k)Γ1−p

k (α+ k)

Γk(β)Γk(α)(α(p− 1) + k)[
(b− a)

α
k (p−1)+1Jβ+α−k

a+

(
fp(b)
g(b)

)
− Jβ+α−k

a+

(
fp(b)
g(b) (b− a)

α
k (p−1)+1

)]
.
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This ends the proof.

Theorem 2.2. Let f ≥ 0 and g > 0 on [a, b] ⊆ [0,∞[ such that g is non
decreasing. Then, for all 0 < p < 1, 0 < α

k < 1
1−p and β + α > k, we have

(7)

J β,k
a+


[
J α,k
a+ f(b)

]p
g(b)

 ≥ c1

×
[
(b− a)

α
k (p−1)+1Jβ+α−k, k

a+

(
fp(b)
g(b)

)
− Jβ+α−k, k

a+

(
fp(b)
g(b) (b− a)

α
k (p−1)+1

)]
,

where c1 =
Γk(β + α− k)Γ1−p

k (α+ k)

Γk(β)Γk(α)(k − α(1− p))g(b)
.

Proof. For 0 < p < 1, use the reverse Hölder inequality for
1

p
+

1

p′
= 1, we

have[
J α,k
a+ f(x)

]p
≥

Γ1−p
k (α+ k)

kΓk(α)
(x− a)

α
k (p−1)

(∫ x

a

(x− t)
α
k −1fp(t)dt

)
,

hence

J β,k
a+

(
g−1(b)

[
J α,k
a+ f(b)

]p)
=

1

kΓk(β)

∫ b

a

(b− x)
β
k−1g−1(x)

[
Jα,ka+ f(x)

]p
dx

≥
Γ1−p
k (α+ k)

k2Γk(β)Γk(α)

∫ b

a

(b− x)
β
k−1g−1(x)(x− a)

α
k (p−1)

(∫ x

a

(x− t)
α
k −1fp(t)dt

)
dx,

since g is non-decreasing function on [t, b] and by using Fubini Theorem, we
obtain

J β,k
a+

(
g−1(b)

[
J α,k
a+ f(b)

]p)
≥

Γ1−p
k (α+ k)

k2Γk(β)Γk(α)

×
∫ b

a

(b− t)
β
k−1g−1(b)(b− t)

α
k −1fp(t)

(∫ b

t

(x− a)
α
k (p−1)dx

)
dt,

=
Γ1−p
k (α+ k)

k2Γk(β)Γk(α)(
α
k (p− 1) + 1)g(b)

×
∫ b

a

(b− t)
β+α

k −2fp(t)
(
(b− a)

α
k (p−1)+1 − (t− a)

α
k (p−1)+1

)
dt.
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Then∫ b

a

[
J α
a+f(x)

]p
g(x)

dx

≥
Γk(β + α− k)Γ1−p

k (α+ k)

Γk(β)Γk(α)(α(p− 1) + k)g(b)

[
(b− a)

α
k (p−1)+1

kΓk(β + α− k)

∫ b

a

(b− t)
β+α−k

k −1fp(t)dt

− 1

kΓk(β + α− k)

∫ b

a

(b− t)
β+α−k

k −1fp(t)(t− a)
α
k (p−1)+1dt

]

=
Γk(β + α− k)Γ1−p

k (α+ k)

Γk(β)Γk(α)(α(p− 1) + k)g(b)[
(b− a)

α
k (p−1)+1Jβ+α−k, k

a+ (fp(b))− Jβ+α−k, k
a+

(
fp(b)(b− a)

α
k (p−1)+1

)]
.

This gives us the desired result.

Now we present a new result according the left-sided k-Riemann-Liouville
fractional integral operator.

Theorem 2.3. Let f ≥ 0 and g > 0 on [a, b] ⊆ [0,∞[ such that g is non
increasing. Then, for all p < 0, 1

1−p < α
k and α+ β > k, we have

(8)

J β,k
b−


[
J α,k
b− f(a)

]p
g(a)

 ≤ c2

×
[
J β+α−k, k
b−

(
fp(a)(b− a)

α
k (p−1)+1

)
− (b− a)

α
k (p−1)+1J β+α−k, k

b− (fp(a))
]
,

where c2 =
Γk(β + α− k)Γ1−p

k (α+ k)

Γk(β)Γk(α)(α(1− p)− k)g(a)
.

Proof. For p < 0, using the reverse Hölder inequality [5] for
1

p
+

1

p′
= 1, we

have

J α,k
b− f(x) =

∫ b

x

[
(t− x)

α
k −1

kΓk(α)

] 1
p′
[
(t− x)

α
k −1

kΓk(α)

] 1
p

f(t)dt

≥
(

1

Γk(α+ k)
(b− x)

α
k

) 1
p′
(

1

kΓk(α)

∫ b

x

(t− x)
α
k −1fp(t), dt

) 1
p



276 Bouharket Benaissa

since p < 0, we get

J β,k
b−


[
J α,k
b− f(a)

]p
g(a)

 =
1

kΓk(β)

∫ b

a

(x− a)
β
k−1g−1(x)

[
J α,k
b− f(x)

]p
dx

≤
Γ1−p
k (α+ k)

k2Γk(β)Γk(α)

∫ b

a

(x− a)
β
k−1g−1(x)(b− x)

α
k (p−1)

(∫ b

x

(t− x)
α
k −1fp(t)dt

)
dx.

Since g is a non-increasing function on [a, t] and by using Fubini Theorem, we
get

J β,k
b−


[
J α,k
b− f(a)

]p
g(a)


≤

Γ1−p
k (α+ k)

k2Γk(β)Γk(α)

∫ b

a

(t− a)
β
k−1g−1(a)(t− a)

α
k −1fp(t)

(∫ t

a

(b− x)
α
k (p−1)dx

)
dt

=
g−1(a)Γ1−p

k (α+ k)

kΓk(β)Γk(α)(α(1− p)− k)

×
∫ b

a

fp(t)(t− a)
α+β

k −2
(
(b− t)

α
k (p−1)+1 − (b− a)

α
k (p−1)+1

)
dt,

this gives us that
(9)

J β,k
b−


[
J α,k
b− f(a)

]p
g(a)



≤
Γk(β + α− k)Γ1−p

k (α+ k)

Γk(β)Γk(α)(α(1− p)− k)g(a)

[∫ b

a

(t− a)
β+α−k

k −1

kΓk(β + α− k)
fp(t)(b− t)

α
k (p−1)+1dt

− (b− a)
α
k (p−1)+1

Γk(β + α− k)

∫ b

a

(t− a)
β+α−k

k −1fp(t)dt

]

=
Γk(β + α− k)Γ1−p

k (α+ k)

Γk(β)Γk(α)(α(1− p)− k)g(a)

×
[
J β+α−k, k
b−

(
fp(a)(b− a)

α
k (p−1)+1

)
− (b− a)

α
k (p−1)+1J β+α−k, k

b− (fp(a))
]
.

That completes our proof.
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3. Applications

Taking k = 1 in the above Theorem 2.1, Theorem 2.2 and Theorem 2.3, we
deduce the following Corollaries related to Riemann-Liouville inequalities with
two orders α and β.

Corollary 3.1. Let f ≥ 0 and g > 0 on [a, b] ⊆ [0,∞[ such that g is non
decreasing. Then, for all p > 1, β ≥ 1, α ≥ 1, we have

(10)

J β
a+

([
J α
a+f(b)

]p
g(b)

)
≤ c

×
[
(b− a)α(p−1)+1Jβ+α−1

a+

(
fp(b)
g(b)

)
− Jβ+α−1

a+

(
fp(b)
g(b) (b− a)α(p−1)+1

)]
,

where c =
Γ(β + α− 1)Γ1−p(α+ 1)

Γ(β)Γ(α)(α(p− 1) + 1)
.

Remark 3.2. If we replace g by gq where q > 0, we get Theorem 3 in [6].

Corollary 3.3. Let f ≥ 0 and g > 0 on [a, b] ⊆ [0,∞[ such that g is non
decreasing. Then, for all 0 < p < 1, 0 < α < 1

1−p and β + α > 1, we have

(11)

J β
a+

([
J α
a+f(b)

]p
g(b)

)
≥ c1

×
[
(b− a)α(p−1)+1Jβ+α−1

a+

(
fp(b)
g(b)

)
− Jβ+α−1

a+

(
fp(b)
g(b) (b− a)alpha(p−1)+1

)]
,

where c1 =
Γ(β + α− 1)Γ1−p(α+ 1)

Γ(β)Γ(α)(1− α(1− p))g(b)
.

Corollary 3.4. Let f ≥ 0 and g > 0 on [a, b] ⊆ [0,∞[ such that g is non
increasing. Then, for all p < 0, 1

1−p < α and α+ β > 1, we have

(12)

J β
b−

([
J α
b−f(a)

]p
g(a)

)
≤ c2

×
[
J β+α−1
b−

(
fp(a)(b− a)α(p−1)+1

)
− (b− a)α(p−1)+1J β+α−1

b− (fp(a))
]
,

where c2 =
Γ(β + α− 1)Γ1−p(α+ 1)

Γ(β)Γ(α)(α(1− p)− 1)g(a)
.

Now, setting β = k in the above Theorem 2.1, Theorem 2.2 and Theo-
rem 2.3, we deduce the following Corollaries related to k-Riemann-Liouville
inequalities with the order α.
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Corollary 3.5. Let f ≥ 0 and g > 0 on [a, b] ⊆ [0,∞[ such that g is non
decreasing. Then, for all p > 1, α

k ≥ 1, we have

(13)

∫ b

a


[
J α,k
a+ f(x)

]p
g(x)

dx

 ≤ c

×
[
(b− a)

α
k (p−1)+1Jα, ka+

(
fp(b)
g(b)

)
− Jα, ka+

(
fp(b)
g(b) (b− a)

α
k (p−1)+1

)]
,

where c =
k Γ1−p

k (α+ k)

α(p− 1) + k
.

Remark 3.6. If we replace g by gq where q > 0, we get Theorem 3.2 in [8].

Corollary 3.7. Let f ≥ 0 and g > 0 on [a, b] ⊆ [0,∞[ such that g is non
decreasing. Then, for all 0 < p < 1, 0 < α

k < 1
1−p , we have

(14)

∫ b

a


[
J α,k
a+ f(x)

]p
g(x)

dx

 ≥ c1

×
[
(b− a)

α
k (p−1)+1Jα, ka+

(
fp(b)
g(b)

)
− Jα, ka+

(
fp(b)
g(b) (b− a)

α
k (p−1)+1

)]
,

where c1 =
k Γ1−p

k (α+ k)

(k − α(1− p))g(b)
.

Corollary 3.8. Let f ≥ 0 and g > 0 on [a, b] ⊆ [0,∞[ such that g is non
increasing. Then, for all p < 0, 1

1−p < α
k , we have

(15)

∫ b

a


[
J α,k
b− f(x)

]p
g(x)

 ≤ c2

×
[
J α, k
b−

(
fp(a)(b− a)

α
k (p−1)+1

)
− (b− a)

α
k (p−1)+1J α, k

b− (fp(a))
]
,

where c2 =
k Γ1−p

k (α+ k)

(α(1− p)− k)g(a)
.

Remark 3.9. 1. Taking k = 1 in the Corollary 3.5, we get Theorem 3.2
in [6].

2. Taking k = 1 in the Corollary 3.7, then for 0 < p < 1 and 0 < α < 1
1−p ,

we get the following inequality.

(16)

∫ b

a

[
J α
a+f(x)

]p
gq(x)

dx ≥ Γ1−p(α+ 1)

(α(p− 1) + 1)gq(b)

×
[
(b− a)α(p−1)+1J α

a+ (fp(b))− J α
a+

(
fp(b)(b− a)α(p−1)+1

)]
.
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3. Setting k = 1 in the Corollary 3.8, hence for p < 0 and 1
1−p < α, we

obtain the following inequality.

(17)

∫ b

a

[
J α
b−f(x)

]p
g(x)

dx ≥ Γ1−p(α+ 1)

(α(1− p)− 1)g(a)

×
[
J α
b−

(
fp(a)(b− a)α(p−1)+1

)
− (b− a)α(p−1)+1J α

b− (fp(a))
]
.

Inequalities (16) and (17) are a new version of Riemann-Liouville integral
inequalities. Putting now α = k = 1 in the Corollary 3.8, we obtain the
following Corollary.

Corollary 3.10. Let f ≥ 0, g > 0 on [a, b] ⊆ [0,∞[ such that g is non

increasing and F (x) =

∫ b

x

f(t)dt. Then, for all p < 0, we have

(18)

−p

∫ b

a

F p(x)

g(x)
dx ≥ 1

g(a)

[∫ b

a

fp(x)(b− x)pdx− (b− a)p
∫ b

a

fp(x)dx

]
.

Remark 3.11. The inequality (18) coincide with inequality (4.26) in [4].

4. Conclusion

We have presented some new reverse Hardy type inequalities introduced via
fractional integral operators k-Riemann-Liouville involving two orders alpha
and beta by using the Holder’s inequality, moreover new results are obtained
with the parameters 0 < p < 1 and p < 0. We then improved and general-
ized various consequences in the framework of fractional Hardy-type integral
inequalities, we also presented new results related to Riemann-Liouville frac-
tional integral operators with two orders.
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