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GEOMETRIC CHARACTERISTICS OF GENERIC

LIGHTLIKE SUBMANIFOLDS

Nand Kishor Jha, Megha Pruthi, Sangeet Kumar∗, and Jatinder
Kaur

Abstract. In the present study, we investigate generic lightlike submani-
folds of indefinite nearly Kaehler manifolds. After proving the existence of

generic lightlike submanifolds in an indefinite generalized complex space

form, a non-trivial example of this class of submanifolds is discussed.
Then, we find a characterization theorem enabling the induced connec-

tion on a generic lightlike submanifold to be a metric connection. We

also derive some conditions for the integrability of distributions defined
on generic lightlike submanifolds. Further, we discuss the non-existence

of mixed geodesic generic lightlike submanifolds in a generalized com-

plex space form. Finally, we investigate totally umbilical generic lightlike
submanifolds and minimal generic lightlike submanifolds of an indefinite

nearly Kaehler manifold.

1. Introduction

The concept of the CR-submanifolds of a Kaehler manifold was firstly de-
veloped by Bejancu in 1978 ([2]). He studied about totally real and complex
submanifolds as sub cases and further the detailed discussion and investigation
was done by the many researchers ([3]–[7]). As a hypersurface of a complex
manifold, the CR-structure on a five-dimensional manifold has outstanding
applications in differential geometry and the general theory of relativity. In
this context, Duggal studied the interaction of CR-structures with Lorentzian
geometry which was needed for the general theory of relativity ([9]). Fur-
thermore, they introduced the interaction of CR-submanifolds with the theory
of relativity and developed new results of geometric and physical importance
([10]). Deshmukh et al. in [8] initiated the study of CR-submanifolds of nearly
Kaehler manifolds. Husain et al. in [17] extended this study and obtained
their fundamental properties and observed that constant holomorphic sectional
curvature in nearly Kaehler manifolds does not admit complex hypersurfaces.
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Furthermore, Duggal et al. in [11] established a new class with exclusion of
invariant and totally real cases called CR-lightlike submanifolds of indefinite
Kaehler manifolds. Thereafter, Duggal et al. in [14] introduced another class
called SCR-lightlike submanifolds of indefinite Kaehler manifolds containing
invariant and screen real subcases. They concluded that SCR(CR)-lightlike
submanifolds are entirely different from each other as CR-lightlike submani-
folds are always non-trivial. To achieve the desired connections, Duggal et al.
in [15] established another class called GCR-lightlike submanifolds of indefi-
nite Kaehler manifolds. It acts as an umbrella for all above mentioned lightlike
submanifolds. Subsequently, Kumar et al. in [19] introduced a new class of
submanifolds called GCR-lightlike submanifolds of indefinite nearly Kaehler
manifolds taking constant holomorphic sectional curvature c and of constant
type α.

On the other hand, Zhu et al. in [22] provided the concept about parallel
canonical structure using Generic submanifolds of nearly Kaehler manifolds.
The theory of lightlike submanifolds is not having applications in the interpre-
tation of mathematical geometry; rather, it is having excellent applications in
mathematical physics too in terms of study of four-dimensional electromagnetic
space times, Einstein Field Equations, different types of horizons (Cauchy’s
horizons, event horizons and Kruskal’s horizons). The deep analysis of lightlike
submanifolds and their enormous applications in mathematical physics moti-
vated the present authors to work on generic lightlike submanifolds of indefinite
nearly Kaehler manifolds.

In the present paper, we introduce the study of generic lightlike subman-
ifolds of indefinite nearly Kaehler manifolds. We obtain the existence of this
class and the non-existence of mixed geodesic generic lightlike submanifolds of
a generalized complex space form. We also study totally umbilical generic light-
like submanifolds and give some characterization theorems on minimal generic
lightlike submanifolds.

2. Preliminaries

2.1. Geometry of lightlike submanifolds

Let (K̄, ḡ) be a real (m+n)-dimensional semi-Riemannian manifold of con-
stant index q such that m,n ≥ 1, 1 ≤ q ≤ m+ n− 1, (K, g) an m-dimensional
submanifold of K̄, and g the induced metric of ḡ on K. If ḡ is degenerate on
the tangent bundle TK of K, then K is called a lightlike submanifold of K̄.
For a degenerate metric g on K, one has the equation

(1) TK⊥ = ∪{u ∈ TxK̄ : ḡ(u, v) = 0,∀v ∈ TxK,x ∈ K},

is a degenerate n-dimensional subspace of TxK̄. Thus, both TxK and TxK
⊥

are degenerate orthogonal subspaces but no longer complementary. In this



Geometric Characteristics of Generic Lightlike Submanifolds 181

case, there exists a subspace Rad(TxK) = TxK ∩TxK
⊥, which is known as the

radical (null) subspace. If the mapping

(2) Rad(TK) : x ∈ K −→ Rad(TxK)

defines a smooth distribution on K of rank r > 0, then the submanifold K
of K̄ is called an r-lightlike submanifold and Rad(TK) is called the radical
distribution on K. The screen distribution S(TK) is a semi-Riemannian com-
plementary distribution of Rad(TK) in TK, that is,

(3) TK = Rad(TK)⊥S(TK)

and S(TK⊥) is a complementary vector subbundle to Rad(TK) in TK⊥.

Theorem 2.1. [11] For an r-lightlike submanifold (K, g, S(TK), S(TK⊥))
of a semi-Riemannian manifold (K̄, ḡ), there exists a complementary vector
bundle ltr(TK) of Rad(TK) in S(TK⊥)⊥ and a basis of Γ(ltr(TK) |u) con-
sisting of smooth section {Ni} of S(TK⊥)⊥ |u, where u is a coordinate neigh-
borhood of K satisfying

(4) ḡ(Ni, Nj) = 0, ḡ(Ni, ξj) = δij , for i, j ∈ {1, 2, .., r},

where {ξ1, ..., ξr} is the lightlike basis of Γ(Rad(TK)).

Let tr(TK) and ltr(TK) be complementary (but not orthogonal) vector
bundles to TK in TK̄ |K and to Rad(TK) in S(TK⊥)⊥, respectively. Then
we have

(5) tr(TK) = ltr(TK)⊥S(TK⊥).

(6) TK̄ |K= TK ⊕ tr(TK) = (Rad(TK)⊕ ltr(TK))⊥S(TK)⊥S(TK⊥).

If we consider the Levi-Civita connection ∇̄ on K̄, then in view of decom-
position (6) the Gauss and Weingarten formulae are

(7) ∇̄Y1Y2 = ∇Y1Y2 + h(Y1, Y2), ∀ Y1, Y2 ∈ Γ(TK),

(8) ∇̄Y1
U = −AUY1 +∇⊥

Y1
U, ∀ Y1 ∈ Γ(TK), U ∈ Γ(tr(TK)),

where {∇Y1
Y2, AUY1} and {h(Y1, Y2),∇⊥

Y1
U} belongs to Γ(TK) and Γ(tr(TK)),

respectively. One may note that ∇ is a torsion-free linear connection on K, h
is a symmetric bilinear form on Γ(TK), which is known as second fundamental
form and AU is a linear operator on K, which is known as the shape operator.

In view of the equation (5) and considering the projection morphisms L and
S of tr(TK) on ltr(TK) and S(TK⊥), respectively, from the equations (7) and
(8), we attain

(9) ∇̄Y1
Y2 = ∇Y1

Y2 + hl(Y1, Y2) + hs(Y1, Y2),

(10) ∇̄Y1U = −AUY1 +Dl
Y1
U +Ds

Y1
U,
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where hl(Y1, Y2) = L(h(Y1, Y2)), h
s(Y1, Y2) = S(h(Y1, Y2)), D

l
Y1
U = L(∇⊥

Y1
U),

Ds
Y1
U = S(∇⊥

Y1
U). As hl and hs are Γ(ltr(TK))-valued and Γ(S(TK⊥))-

valued, respectively, they are called the lightlike second fundamental form and
the screen second fundamental form on K. In particular,

(11) ∇̄Y1N = −ANY1 +∇l
Y1
N +Ds(Y1, N),

(12) ∇̄Y1
V = −AV Y1 +∇s

Y1
V +Dl(Y1, V ),

where Y1 ∈ Γ(TK), N ∈ Γ(ltr(TK)) and V ∈ Γ(S(TK⊥)). Employing the
equations (9)–(12), we obtain

(13) ḡ(hs(Y1, Y2), V ) + ḡ(Y2, D
l(Y1, V )) = g(AV Y1, Y2),

(14) ḡ(ANY1, N
′) + ḡ(N,AN ′Y1) = 0,

for ξ ∈ Γ(Rad(TK)), V ∈ Γ(S(TK⊥)) and N,N ′ ∈ Γ(ltr(TK)).
If we consider P̄ and the projection morphism of TK on S(TK), then by

employing the equation (3) we obtain

(15) ∇Y1
P̄ Y2 = ∇∗

Y1
P̄ Y2 + h∗(Y1, Y2),

(16) ∇Y1
ξ = −A∗

ξY1 +∇∗t
Y1
ξ,

for Y1, Y2 ∈ Γ(TK) and ξ ∈ Γ(Rad(TK)), where {∇∗
Y1
PY2, A

∗
ξY1} and

{h∗(Y1, Y2),∇∗t
Y1
ξ}

belong to Γ(S(TK)) and Γ(Rad(TK)), respectively. Here, ∇∗ and ∇∗t are
linear connections on complementary distributions S(TK) and Rad(TK), re-
spectively. Moreover, h∗ and A∗ are Rad(TK)-valued and S(TK)-valued bi-
linear forms and called as second fundamental forms of distributions S(TK)
and Rad(TK), respectively.

Further, employing the equations (9), (10), (15) and (16), we obtain

(17) ḡ(hl(Y1, PY2), ξ) = g(A∗
ξY1, PY2),

(18) ḡ(h∗(Y1, PY2), N) = ḡ(ANY1, PY2),

for Y1, Y2 ∈ Γ(TK), ξ ∈ Γ(Rad(TK)) and N ∈ Γ(ltr(TK)).
By considering ∇̄ be a metric connection on K̄, we have

(19) (∇Y1
g)(Y2, Y3) = ḡ(hl(Y1, Y2), Y3) + ḡ(hl(Y1, Y3), Y2),

for Y1, Y2, Y3 ∈ Γ(TK). Then the equation of Codazzi is given by

(R̄(Y1, Y2)Y3)
⊥ = (∇Y1

hl)(Y2, Y3)− (∇Y2
hl)(Y1, Y3) +Dl(Y1, h

s(Y2, Y3))

−Dl(Y2, h
s(Y1, Y3)) + (∇Y1h

s)(Y2, Y3)− (∇Y2h
s)(Y1, Y3)

+Ds(Y1, h
l(Y2, Y3))−Ds(Y2, h

l(Y1, Y3)),(20)

where

(21) (∇Y1
hl)(Y2, Y3) = ∇l

Y1
(hl(Y2, Y3))− hl(∇Y1

Y2, Y3)− hl(Y2,∇Y1
Y3),
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(22) (∇Y1
hs)(Y2, Y3) = ∇s

Y1
(hl(Y2, Y3))− hs(∇Y1

Y2, Y3)− hs(Y2,∇Y1
Y3).

2.2. Indefinite nearly Kaehler manifolds

An indefinite almost Hermitian manifold together with an almost complex
structure J̄ and almost Hermitian metric ḡ is said to be an indefinite nearly
Kaehler manifold if

(23) J̄2 = −I, ḡ(J̄Y1, J̄Y2) = ḡ(Y1, Y2), (∇̄Y1 J̄)Y2 + (∇̄Y2 J̄)Y1 = 0,

for Y1, Y2 ∈ Γ(TK̄), where ∇̄ denotes the Levi-Civita connection on K̄ (see
[16]).

On the other hand, an indefinite almost Hermitian manifold (K̄, ḡ, ∇̄, J̄) is
said to be an indefinite RK-manifold if

R̄(J̄Y1, J̄Y2, J̄Y3, J̄Y4) = R̄(Y1, Y2, Y3, Y4),

for Y1, Y2, Y3, Y4 ∈ Γ(TK̄). Further, an indefinite RK-manifold of constant
holomorphic sectional curvature c and of constant type α is known as an in-
definite generalized complex space form and it is denoted by K̄(c, α). For an
indefinite generalized complex space form K̄(c, α), the curvature tensor R̄ is
defined as follows:

R̄(Y1, Y2)Y3 =
c+ 3α

4
{ḡ(Y2, Y3)Y1 − ḡ(Y1, Y3)Y2}

+
c− α

4
{ḡ(Y1, J̄Y3)J̄Y2 − ḡ(Y2, J̄Y3)J̄Y1 + 2ḡ(Y1, J̄Y2)J̄Y3},(24)

where Y1, Y2, Y3 ∈ Γ(TK̄).

3. Generic lightlike submanifolds

Firstly, we define generic lightlike submanifolds of indefinite nearly Kaehler
manifolds following the paper [18].

Definition 3.1. Let K be a real r-lightlike submanifold of an indefinite
nearly Kaehler manifold K̄. Then, K is said to be a generic lightlike submani-
fold if the screen distribution S(TK) of K is expressed as

S(TK) =J̄(S(TK)⊥)⊕orth D0

=J̄(Rad(TK))⊕ J̄(ltr(TK))⊕orth J̄(S(TK⊥))⊕orth D0,(25)

where D0 is a non-degenerate almost complex distribution on K with respect
to J̄ , i.e., J̄(D0) = D0 and D′ is an r-lightlike distribution on S(TK) such that
J̄(D′) ⊂ tr(TK), where D′ = J̄(ltr(TK))⊕orth J̄(S(TK⊥)).

Therefore, by using the equation (25) the general decompositions of the
equations (3) and (6) become

TK = D ⊕D′, T K̄ = D ⊕D′ ⊕ tr(TK),
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where D is a 2r-lightlike almost complex distribution on K such that D =
Rad(TK)⊕orth J̄(Rad(TK))⊕orth D0.

Consider the projections Q,P1, and P2 from TK to D, J̄ ltr(TK), and
J̄S(TK⊥), respectively. Then for Y ∈ Γ(TK) we have

(26) Y = QY + P1Y + P2Y.

Thus by applying J̄ to the equation (26), we obtain

(27) J̄Y = TY + wP1Y + wP2Y,

and we can write the equation (27) as

(28) J̄Y = TY + wY,

where TY and wY denote the tangential and transversal components of J̄Y ,
respectively. Similarly, for V ∈ Γ(tr(TK))

(29) J̄V = EV,

where EV is the section of TK.
Differentiating the equation (27) and using the equations (9), (11), (12) and

(29), we derive

(∇Y1T )Y2 + (∇Y2T )Y1 =AwP1Y2Y1 +AwP1Y1Y2 +AwP2Y2Y1 +AwP2Y1Y2

+ 2Eh(Y1, Y2),(30)

Ds(Y1, wP1Y2) +Ds(Y2, wP1Y1) = −∇s
Y1
wP2Y2 −∇s

Y2
wP2Y1 + wP2∇Y1

Y2

+ wP2∇Y2
Y1 − hs(Y1, TY2)− hs(Y2, TY1),(31)

and

Dl(Y1, wP2Y2) +Dl(Y2, wP2Y1) = −∇l
Y1
wP1Y2 −∇l

Y2
wP1Y1 + wP1∇Y1Y2

+ wP1∇Y2
Y1 − hl(Y1, TY2)− hl(Y2, TY1).(32)

Example 3.2. Consider a submanifold K of (R8
2, ḡ) with signature

(+,+,−,+,+,−,+,+)

given by the equations u3 = u8 and u5 =
√
1− u2

6 with respect to the basis

(∂u1, ∂u2, ∂u3, ∂u4, ∂u5, ∂u6, ∂u7, ∂u8).

The tangent bundle of K is given by

U1 = ∂u1, U2 = ∂u2, U3 = ∂u3 + ∂u8, U4 = ∂u4,

U5 = −u6∂u5 + u5∂u6, U6 = ∂u7.

It is easy to see that K is a 1-lightlike submanifold with Rad(TK) = Span{U3}
and J̄U3 = U4 − U6 ∈ Γ(S(TK)). Moreover, J̄U1 = U2 and J̄U2 = −U1

and therefore D0 = Span{U1, U2}. By direct calculations, we get S(TK⊥) =
Span{V = x5∂x5 + x6∂x6}. Thus, J̄V = U5 and thus J̄S(TK⊥) ⊂ S(TK).
On the other hand, ltr(TK) is spanned by N = 1

2 (−∂x3 + ∂x8). Then J̄N =
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− 1
2 (∂x4 + ∂x7) = − 1

2 (U4 + U6) and D′ = {J̄N, J̄V }. Thus, K is a proper

6-dimensional generic lightlike submanifold of (R8
2, ḡ).

Note: In the forthcoming part of the paper, we shall write gc.l.s. for
a generic lightlike submanifold, K̄ for an indefinite nearly Kaehler manifold
and K̄(c, α) for an indefinite generalized complex space form, unless otherwise
indicated.

Theorem 3.3. A lightlike submanifold K of K̄(c, α) (provided, c = −3α
and α ̸= 0) is gc.l.s. with D0 ̸= 0 if and only if

(a) The maximal complex subspace of TpK, p ∈ K defines a distribution

D = Rad(TK) ⊥ J̄(Rad(TK)) ⊥ D0,

where D0 is a non-degenerate complex distribution.
(b) There exists a lightlike transversal vector bundle ltr(TK) such that

ḡ(R̄(ξ,N)ξ,N) = 0,

for ξ ∈ Γ(Rad(TK)) and N ∈ Γ(ltr(TK)).
(c) There exists a non-degenerate vector bundle S(TK⊥) of K such that

ḡ(R̄(V, V ′)V, V ′) = 0,

for V, V ′ ∈ Γ(S(TK⊥)).

Proof. Assume that K is a gc.l.s. of K̄(c, α) provided, c = −3α and α ̸= 0.
Then, in view of Definition 3.1, D = Rad(TK) ⊥ J̄Rad(TK) ⊥ D0 is a
maximal subspace, which proves (a). Now for ξ ∈ Γ(Rad(TK)) and N ∈
Γ(ltr(TK)), from the equation (24), we obtain

(33) ḡ(R̄(ξ,N)ξ,N) = 0,

which satisfies (b). Similarly, using the equation (24), for V, V ′ ∈ Γ(S(TK⊥)),
one has

(34) ḡ(R̄(V, V ′)V, V ′) = 0.

Hence, (c) follows.
Conversely, consider (a), (b) and (c) hold. Then, from (a), it follows

that Rad(TK) in K satisfies J̄Rad(TK) ∩ Rad(TK) = {0} and we obtain
a non-degenerate distribution D0 on S(TK). Further, as the distribution
ltr(TK) is orthogonal to S(TK), therefore, for ξ ∈ Γ(Rad(TK)), we obtain
ḡ(ξ, J̄N) = −ḡ(J̄ξ,N) = 0. This yields that J̄ ltr(TK) defines a distribution
on M . Moreover, employing (c), it is clear that there exists a distribution
J̄(S(TK⊥)), which is orthogonal to D ⊕ J̄ ltr(TK), which ensures definition
3.1, thereby we achieve the result.

Lemma 3.4. ([21]) For a nearly Kaehler manifold K̄, one has

(35) (∇̄Y1 J̄)Y2 + (∇̄J̄Y1
J̄)J̄Y2 = 0, N(Y1, Y2) = −4J̄((∇̄Y1 J̄)Y2),
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for Y1, Y2 ∈ Γ(TK̄), where Nijenhuis tensor N(Y1, Y2) is given by

(36) N(Y1, Y2) = [J̄Y1, J̄Y2]− J̄ [Y1, J̄Y2]− J̄ [J̄Y1, Y2]− [Y1, Y2].

Theorem 3.5. Consider a gc.l.s. K of K̄. IfD is an integrable distribution
on K, then h(Y1, J̄Y2) = h(J̄Y1, Y2) for Y1, Y2 ∈ Γ(D).

Proof. For Y1, Y2 ∈ Γ(D), by employing the equations (9) and (36) we obtain

J̄N(Y1, Y2) = 2(∇Y1
J̄Y2 −∇Y2

J̄Y1) + 2(h(Y1, J̄Y2)

−h(J̄Y1, Y2))− 2J̄ [Y1, Y2].(37)

As D is an integrable distribution, therefore J̄N(Y1, Y2) ∈ Γ(TK) and

J̄ [Y1, Y2] ∈ Γ(TK).

Further, by equating the transversal components we obtain

h(Y1, J̄Y2) = h(J̄Y1, Y2),

which proves the assertion.

Theorem 3.6. Let K be a gc.l.s. of K̄. If D defines a totally geodesic
foliation in K, then K is D-geodesic.

Proof. Assume that D defines a totally geodesic foliation in K̄. Then for
Y1, Y2 ∈ Γ(D), ∇̄Y1

Y2 ∈ Γ(D). Further, using the equation (9), we obtain

(38) ḡ(∇̄Y1
Y2, ξ) = ḡ(hl(Y1, Y2), ξ) = 0

for ξ ∈ Γ(Rad(TK)) and

(39) ḡ(∇̄Y1
Y2, V ) = ḡ(hs(Y1, Y2), V ) = 0

for V ∈ Γ(S(TK⊥)).

Theorem 3.7. There does not exist any proper mixed geodesic gc.l.s. of
K̄(c, α) with D0 to be a totally geodesic foliation such that c ̸= α.

Proof. For Y ∈ Γ(D0) and Z ∈ Γ(J̄S(TK⊥)) ⊂ Γ(D′), by employing the
equation (24) we attain

(40) ḡ(R̄(Y, J̄Y )Z, J̄Z) = −c− α

2
||Y ||2||Z||2.

Then, taking into account, hypothesis with the equation (20), we derive

(41) ḡ(R̄(Y, J̄Y )Z, J̄Z) = ḡ((∇Y h
s)(J̄Y, Z)− (∇J̄Y h

s)(Y,Z), J̄Z),

for Y ∈ Γ(D0) and Z ∈ Γ(J̄S(TK⊥)). Next, from employing the equation
(22), we obtain

(42) (∇Y h
s)(J̄Y, Z) = −hs(∇Y J̄Y, Z)− hs(J̄Y,∇Y Z)

and

(43) (∇J̄Y h
s)(Y,Z) = −hs(∇J̄Y Y,Z)− hs(Y,∇J̄Y Z).
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From the equations (42) and (43), we have

(∇J̄Y h
s)(Y, Z)− (∇J̄Y h

s)(Y,Z) =hs([J̄Y, Y ], Z)− hs(J̄Y,∇Y Z)

+ hs(Y,∇J̄Y Z).(44)

As D0 defines a totally geodesic foliation, thus for Y ∈ Γ(D0) and Z ∈
Γ(J̄S(TK⊥)), we attain

g(T∇Y Z, Y ) =− g(∇Y Z, TY ) = −ḡ(∇̄Y Z, TY )

=ḡ(Z, ∇̄Y TY ) = 0.(45)

Further, the non-degeneracy ofD0 gives that∇Y Z ∈ Γ(D′), hence the equation
(44) yields

(∇J̄Y h
s)(Y,Z)− (∇J̄Y h

s)(Y,Z) = 0,

which further gives ḡ(R̄(Y, J̄Y )Z, J̄Z) = 0. Then, from the equation (40) we
have

−c− α

2
||Y ||2||Z||2 = 0.

Using the non-degeneracy of D0 and J̄S(TK⊥), we obtain c = α.

4. Totally umbilical generic lightlike submanifolds

Definition 4.1. ([12]). A lightlike submanifold (K, g) of a semi-Riemannian
manifold (K̄, ḡ) is said to be totally umbilical in K̄ if there exist a smooth
transversal vector field H ∈ Γ(tr(TK)) on K, called as the transversal curva-
ture vector field of K such that for Y1, Y2 ∈ Γ(TK)

(46) h(Y1, Y2) = Hḡ(Y1, Y2).

From the equation (12), K is totally umbilical if and only if, on each coor-
dinate neighborhood u, there exist smooth vector fields H l ∈ Γ(ltr(TK)) and
Hs ∈ Γ(S(TK⊥)) satisfying

(47) hl(Y1, Y2) = H lg(Y1, Y2), hs(Y1, Y2) = Hsg(Y1, Y2), Dl(Y1, V ) = 0,

for Y1, Y2 ∈ Γ(TK) and V ∈ Γ(S(TK⊥)).

From the equation (19), it is clear that the induced connection on the sub-
manifold K from the Levi-Civita connection ∇̄ need not be metric connection.
Therefore, in the following result we derive the conditions under which the
induced connection becomes metric connection.

Theorem 4.2. For a totally umbilical gc.l.s. K of K̄ such that D0 defines
a totally geodesic foliation, then the induced connection ∇ is always a metric
connection.
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Proof. For Y ∈ Γ(D0), using the equation (32), we have

(48) ωP1∇Y Y + ωP1∇Y Y = hl(Y, J̄Y ) + hl(J̄Y, Y )

On taking the inner product of above equation with respect to ξ ∈ Γ(Rad(TK)),
we derive

(49) ḡ(hl(Y, Y ), ξ) = −ḡ(J̄hl(Y, ϕY ), ξ)− ḡ(J̄Dl(Y, ωY ), ξ).

Then, using the hypothesis of being totally umbilical of K, we obtain

(50) ḡ(H l, ξ)g(Y, Y ) = −ḡ(J̄H l, ξ)g(Y, ϕY ) = 0.

In particular, for Y ∈ Γ(D0), ḡ(H
l, ξ)g(Y, Y ) = 0. Using the non-degeneracy

of the distribution D0 and Theorem 2.1, we get H l = 0, further, employing the
equation (47), we arrive at hl = 0. Hence, from the equation (19), the assertion
follows.

Theorem 4.3. For a proper totally umbilical gc.l.s. K of K̄, we have
∇Y Y ∈ Γ(D) for Y ∈ Γ(D).

Proof. Since D′ = J̄(ltr(TK))⊥J̄(S(TK⊥)), therefore ∇Y Y ∈ Γ(D) if and
only if

(51) g(∇Y Y, J̄ξ) = 0 and ḡ(∇Y Y, J̄V ) = 0,

where Y ∈ Γ(D), ξ ∈ Γ(Rad(TK)) and V ∈ Γ(S(TK⊥)). Using the hypothesis
that K is totally umbilical, we have

g(∇Y Y, J̄ξ) =− ḡ(∇̄Y J̄Y, ξ) = −ḡ(hl(Y, J̄Y ), ξ)

=− ḡ(H l, ξ)g(Y, J̄Y )

= 0(52)

and

ḡ(∇Y Y, J̄V ) =− ḡ(∇̄Y J̄Y, V ) = −ḡ(hs(Y, J̄Y ), V )

=− ḡ(Hs, V )g(Y, J̄Y )

= 0.(53)

Hence, the proof follows.

Theorem 4.4. For a proper totally umbilical proper gc.l.s. K of K̄, one
of the following holds:

(i) K is totally geodesic.
(ii) hs = 0 or dim(J̄S(TK⊥)) = 1 if D0 does not define a totally geodesic

foliation in K.

Proof. Firstly, assume that D0 defines a totally geodesic foliation in K. In
view of Theorem 4.2, we get hl = hs = 0, which proves (i). Next, suppose
that D0 does not define a totally geodesic foliation in K, then, employing the
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equations (9), (11), (12), (27) and (28) and considering the tangential parts,
we get

(54) −AJ̄Y2
Y1 −AJ̄Y1

Y2 = T∇Y1
Y2 + T∇Y2

Y1 + 2Eh(Y1, Y2),

for Y1, Y2 ∈ Γ(J̄S(TK⊥)). Taking the inner product with Y1 and then, em-
ploying the equations (13) and (28), we derive

(55) ḡ(hs(Y1, Y1), J̄Y2) = −ḡ(hs(Y1, Y2), J̄Y1),

which further yields

(56) ḡ(Hs, J̄Y2)g(Y1, Y1) = −ḡ(Hs, J̄Y1)g(Y1, Y2).

Interchanging the roles of Y1 and Y2 in the above equation, we derive

(57) (Hs, J̄Y1)g(Y2, Y2) = −ḡ(Hs, J̄Y2)g(Y1, Y2).

From the equations (56) and (57), we obtain

(58) ḡ(Hs, J̄Y1) =
g(Y1, Y2)

2

g(Y1, Y1)g(Y2, Y2)
ḡ(Hs, J̄Y1).

In view of the non-degeneracy of S(TK⊥) and taking into account non-null
vectors Y1 and Y2 in the equation (58), we must have Hs = 0 or Y1 and Y2 are
linearly dependent, which proves (ii).

Theorem 4.5. There exist no totally umbilical proper gc.l.s. of K̄(c, α)
such that c ̸= α.

Proof. Let K be a totally umbilical proper gc.l.s. of K̄(c, α). Then, for
Y ∈ Γ(D0) and Z ∈ Γ(J̄S(TK⊥)) ⊂ Γ(D′), employing the equation (24), we
attain

(59) ḡ(R̄(Y, J̄Y )Z, J̄Z) = −c− α

2
||Y ||2||Z||2.

Further, using the equation (20), we get

(60) ḡ(R̄(Y, J̄Y )Z, J̄Z) = ḡ((∇Y h
s)(J̄Y, Z)− (∇J̄Y h

s)(Y,Z), J̄Z),

for Y ∈ Γ(D0) and Z ∈ Γ(J̄S(TK⊥)). Further, from the equations (59) and
(60), we have

(61) −c− α

2
||Y ||2||Z||2 = ḡ((∇Y h

s)(J̄Y, Z)− (∇J̄Y h
s)(Y,Z), J̄Z).

Now, as K is totally umbilical, thus we have

(∇Y h
s)(J̄Y, Z) =∇Y h

s(J̄Y, Z)− hs(∇Y J̄Y, Z)− hs(J̄Y,∇Y Z)

=− {ḡ(∇Y J̄Y, Z) + ḡ(J̄Y,∇Y Z)}Hs.(62)

Since we have ḡ(J̄Y, Z) = 0, by differentiating this equation with respect to Y
we get g(∇Y J̄Y, Z) = −g(J̄Y,∇Y Z), which further yields

(63) (∇Y h
s)(J̄Y, Z) = 0.
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Similarly, we derive

(64) (∇J̄Y h
s)(Y,Z) = 0.

Thus, from the equation (61), we obtain − c−α
2 ||Y ||2||Z||2 = 0 and the non-

degeneracy of D0 and J̄S(TK⊥) implies that c = α.

5. Minimal generic lightlike submanifolds

Definition 5.1. [1]A lightlike submanifold (K, g, S(TK)) of semi-Riemannian
manifold (K̄, ḡ) is said to be minimal if

(i) hs(ξ1, ξ2) = 0 for ξ1, ξ2 ∈ Γ(Rad(TK)) and
(ii) traceh|S(TK) = 0.

One may note that Definition 5.1 is independent of the choice of S(TK)
and S(TK⊥) but it depends on tr(TK). The minimal lightlike submanifolds
have been dealt in detail by Duggal and Jin in [13] and Kumar in [20].

Example 5.2. Let (K̄, ḡ) = (R10
2 , ḡ) be a semi-Riemannian manifold with

signature (−,−,+,+,+,+,+,+,+,+) with respect to the canonical basis

(∂x1, ∂x2, ∂u3, ∂x4, ∂x5, ∂x6, ∂x7, ∂x8, ∂x9, ∂x10)

and g is the inner product of R10
2 . Let K be a submanifold of R10

2 given by

x1 = u1, x2 = u2, x3 = u1, x4 = u3, x5 = cosu4 coshu5,

x6 = sinu4 sinhu5, x7 = cosu6 coshu7, x8 = cosu6 sinhu7,

x9 = sinu6 coshu7, x10 = sinu6 sinhu7,

where u4, u6 ∈ R− {nπ
2 , n ∈ Z}. Then TK is spanned by

U1 = ∂x1 + ∂x3, U2 = ∂x2, U3 = ∂x4,

U4 = − sinu4 coshu5∂x5 + cosu4 sinhu5∂x6,

U5 = cosu4 sinhu5∂x5 + sinu4 coshu5∂x6,

U6 =− sinu6 coshu7∂x7 − sinu6 sinhu7∂x8

+ cosu6 coshu7∂x9 + cosu6 sinhu7∂x10,

U7 =cosu6 sinhu7∂x7 + cosu6 coshu7∂x8

+ sinu6 sinhu7∂x9 + sinu6 coshu7∂x10.

Clearly, K is a 1-lightlike submanifold with Rad(TK) = Span{U1} and J̄U1 =
U2 + U3 ∈ Γ(S(TK)). Moreover, J̄U4 = U5 therefore D0 = {U4, U5}. Next we
see that J̄U6 and J̄U7 are orthogonal to TK and therefore, we have S(TK⊥) =
{J̄U6, J̄U7}. Thus we conclude that K a proper gc.l.s. of R10

2 . The lightlike
transversal bundle ltr(TK) is spanned by

N1 =
1

2
{−∂x1 + ∂x3}
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Now J̄N1 = − 1
2Z2− 1

2Z3. Hence, ltr(TK) = {N1}. Now, by direct calculations,
using the Gauss and Weingartan formulae, we obtain

hs(Y,U1) = hs(Y, U2), hs(Y,U3) = 0,

hs(Y,U4) = 0, hs(Y,U5) = 0, ∀ Y ∈ Γ(TK),

hs(U6, U6) =

(
1

1 + 2 sinh2 u7

)
J̄U7,

hs(U7, U7) = −
(

1

1 + 2 sinh2 u7

)
J̄U7.

Thus, the induced connection is a metric connection and K is not totally geo-
desic, but it is a proper minimal gc.l.s. of R10

2 .

Theorem 5.3. Consider a totally umbilical gc.l.s. K of K̄. Then K is
minimal if and only if

traceAVp = 0 and traceA∗
ξk

= 0 on D0 ⊥ J̄S(TK⊥),

for Vp ∈ Γ(S(TK⊥)), where k ∈ {1, 2, . . . , r} and p ∈ {1, 2, . . . , n− r}.
Proof. Taking into account the hypothesis and the equation (46), we get

hs(X,Y ) = 0 for X,Y ∈ Γ(Rad(TK)). Now from the definition of gc.l.s., we
have

traceh|S(TK) =

2p∑
i=1

h(Yi, Yi) +

r∑
j=1

h(J̄ξj , J̄ξj) +

r∑
j=1

h(J̄Nj , Nj)

+

n−r∑
l=1

h(J̄Vl, J̄Vl),

where 2p = dim(D0), r = dim(Rad(TK)) and n− r = dim(S(TK⊥)). Further,
employing the equation (46), we derive h(J̄ξj , J̄ξj) = h(J̄Nj , Nj) = 0. Thus,
the above equation becomes

traceh|S(TK) =

2p∑
i=1

h(Yi, Yi) +

n−r∑
l=1

h(J̄Vl, J̄Vl)

=

2p∑
i=1

1

r

r∑
k=1

ḡ(hl(Yi, Yi), ξk)Nk

+

2p∑
i=1

1

n− r

n−r∑
p=1

ḡ(hs(Yi, Yi), Vp)Vp

+

n−r∑
l=1

1

r

r∑
k=1

ḡ(hl(J̄Vl, J̄Vl), ξk)Nk

+

n−r∑
l=1

1

n− r

n−r∑
p=1

ḡ(hs(J̄Vl, J̄Vl), Vp)Vp(65)
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where {V1, V2, . . . , Vn−r} is an orthonormal basis of S(TK⊥). Then employing
the equations (13) and (17) in the equation (65), we attain

traceh|S(TK) =

2p∑
i=1

1

r

r∑
k=1

ḡ(A∗
ξk
Yi, Yi)Nk +

2p∑
i=1

1

n− r

n−r∑
p=1

ḡ(AVp
Yi, Yi)Vp

+

n−r∑
l=1

1

r

r∑
k=1

ḡ(A∗
ξk
J̄Vl, J̄Vl)Nk

+

n−r∑
l=1

1

n− r

n−r∑
p=1

ḡ(AVp
J̄Vl, J̄Vl)Vp(66)

Thus, traceh|S(TK) = 0 if and only if traceAVp = 0 and traceAξ∗k
= 0 on

D0⊥J̄S(TK⊥), which proves the theorem.

Definition 5.4. [11] A lightlike submanifold K of a semi-Riemannian man-
ifold K̄ is said to be irrotational if and only if ∇̄Y ξ ∈ Γ(TK) for Y ∈ Γ(TK)
and ξ ∈ Γ(Rad(TK)).

Theorem 5.5. Let K be an irrotational gc.l.s. of K̄. If D is integrable
distribution, then K is minimal if and only if

traceA∗
ξ |J̄Rad(TK)⊕D′ = 0 and traceAV |J̄Rad(TK)⊕D′ = 0.

Proof. As K is irrotational, thus we have hs(Y, ξ) = 0, for Y ∈ Γ(TK)
and ξ ∈ Γ(Rad(TK)) and hence hs = 0 on Rad(TK). Then, the inte-
grability of D gives that h(Y1, J̄Y2) = h(J̄Y1, Y2) for Y1, Y2 ∈ Γ(D), which
further yields h(J̄Y1, J̄Y2) = −h(Y1, Y2). Next, choose an orthonormal basis
{e1, e2, ..., ep, J̄e1, J̄e2, . . . , J̄ep} of D0, thus we have

traceh|D0
=

2p∑
i=1

ϵih(ei, ei) =

2p∑
i=1

ϵi(h(ei, ei) + h(J̄ei, J̄ei)) = 0.

Hence K is minimal if and only if

(67)

r∑
j=1

h(J̄ξj , J̄ξj) =

r∑
j=1

h(J̄Nj , Nj) =

n−r∑
l=1

h(J̄Vl, J̄Vl) = 0,

where r = dim(Rad(TK)) and n − r = dim(S(TK⊥)). Then, employing the
equations (13) and (17) in the equation (67), the result follows.

Theorem 5.6. Assume that K is a gc.l.s. of K̄. Then the distribution D0

is minimal if and only if

AN J̄Y + J̄ANY and AN ′Y − J̄AN ′ J̄Y have no components in D0

for Y ∈ Γ(D0) and N,N ′ ∈ Γ(ltr(TK)).
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Proof. For Y ∈ Γ(D0) and ξ ∈ Γ(Rad(TK)), using the equations (9), (16),
and (23), we obtain

(68) g(∇Y Y +∇J̄Y J̄Y, J̄ξ) = −g(J̄Y, A∗
ξY ) + g(A∗

ξ J̄Y, Y ).

As the shape operator of S(TK) is self-adjoint, thus from the equation (68),
we derive

(69) g(∇Y Y +∇J̄Y J̄Y, J̄ξ) = 0, for Y ∈ Γ(D0) and ξ ∈ Γ(Rad(TK)).

Similarly, employing the equations (10) and (23), we have

(70) ḡ(∇Y Y +∇J̄Y J̄Y, J̄V ) = 0, for Y ∈ Γ(D0) and V ∈ Γ(S(TK⊥).

Further, from the equations (9), (12) and (23), we derive

(71) g(∇Y Y +∇J̄Y J̄Y, J̄N) = ḡ(Y,AN J̄Y + J̄ANY )

for Y ∈ Γ(D0) and N ∈ Γ(ltr(TK)). Similarly, we have

(72) g(∇Y Y +∇J̄Y J̄Y,N
′) = ḡ(Y,AN ′Y − J̄AN ′ J̄Y )

for Y ∈ Γ(D0) and N ′ ∈ Γ(ltr(TK)). Hence, the proof follows from the
equations (69)–(72).
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