DOI QR코드

DOI QR Code

속도 제어와 차간거리 제어 수용성 개선을 위한 종방향 알고리즘 개발

Development of Longitudinal Algorithm to Improve Speed Control and Inter-vehicle Distance Control Acceptability

  • 김재이 (한국교통대학교 전자공학과) ;
  • 박만복 (한국교통대학교 전자공학과)
  • Kim, Jae-lee (Dept. of Electronic engineering Korea National Univ, of Transportation) ;
  • Park, Man-bok (Dept. of Electronic engineering Korea National Univ, of Transportation)
  • 투고 : 2021.12.20
  • 심사 : 2022.06.13
  • 발행 : 2022.06.30

초록

자율주행 시스템의 수용성 보장은 중요하다. 시스템 수용성 요소 중 하나인 자율주행 종방향 제어기는 상위 제어기와 하위 제어기로 구성된다. 상위 제어기는 Cruise 제어와 Space 제어를 상황에 맞는 제어를 결정하고 필요한 목표 속도를 만든다. 하위 제어기에서는 목표 속도를 추종하기 위한 가속도 신호를 만들어서 제어를 수행한다. 본 논문에서는 상위 제어기에서 Cruise 제어와 Space 제어전환 문제에서 발생하는 차간거리 변동을 개선하는 알고리즘을 제안한다. 제안한 방법은 Cruise 제어에서 Space 제어로 전환되는 시점에 Cruise 제어에 Approach 알고리즘을 추가하여 전환 거리에서 Space 제어로 전환되도록 하는 것이다. 이를 통해서 ± 12m 초기 오차에서 ±4m까지 오차를 개선했으며 실차검증을 수행하였다.

Driver acceptance of autonomous driving is very important. The autonomous driving longitudinal controller, which is one of the factors affecting acceptability, consists of a high-level controller and a low-level controller. The host controller decides the cruise control and the space control according to the situation and creates the required target speed. The sub-controller performs control by creating an acceleration signal to follow the target speed. In this paper, we propose an algorithm to improve the inter-vehicle distance fluctuations that occur in the cruise control and space control switching problems in the host controller. The proposed method is to add an approach algorithm to the cruise control at the time of switching from cruise control to space control so that it is switched to space control at the correct switching distance. Through this, the error was improved from 12m error to 4m, and actual vehicle verification was performed.

키워드

과제정보

본 논문은 산업통상자원부가 지원한 '자율주행기술개발혁신사업'의 지원을 받아 수행된 연구 결과입니다. [과제명: Lv.4 자율주행시스템의 FailOperational 기술개발 / 과제번호: 20018055]. 본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 22AMDP-C160501-02). 또한 이 연구는 2022년도산업통상자원부가 지원한 '자율주행기술개발혁신사업'의 지원을 받아 수행된 연구 결과입니다. [과제명 : 수요응답형 자동발렛주차 및 서비스 기술 개발 / 과제번호 : 20018448]

참고문헌

  1. Dermann, S. and Isermann, R.(1995), "Nonlinear distance and cruise control for passenger cars", In American Control Conference, Proceedings of the 1995, IEEE, vol. 5, pp.3081-3085.
  2. Fancher, P. and Bareket, Z.(1994), "Evaluating headway control using range versus range-rate relationships", Vehicle. System. Dynamics, vol. 23, pp.575-596. https://doi.org/10.1080/00423119408969076
  3. Hedrick, J. K., McMahon, D., Narendran, V. and Swaroop, D.(1991), "Longitudinal vehicle controller design for IVHS systems", In American Control Conference, 1991, IEEE, pp.3107-3112.
  4. Holve, R. P., Protzel, J. and Bernash, K. N.(1995), "Adaptive fuzzy control for driver assistance in car-following", Proceedings of the 3rd European Congress on Intelligent Techniques and Soft Computing-EUFIT' 95, Aachen, Germany, August, pp.1149-1153.
  5. Lihua, L., Ping, L. and Hui, W.(2012), "Vehicle adaptive cruise control design with optimal switching between throttle and brake", Journal of Control Theory and 144Applications, vol. 10, no. 4, pp.426-434. https://doi.org/10.1007/s11768-012-0319-0
  6. Mobus, R., Baotic, M. and Morari, M.(2003), "Multi-object Adaptive Cruise Control", Lecture Notes in Computer Science, Springer, Berlin, vol. 2623, pp.359-374.
  7. Moon, S. and Yi, K.(2008), "Human driving data-based design of a vehicle adaptive cruise control algorithm", Vehicle. System. Dynamics, vol. 46, no. 8, pp.661-690. https://doi.org/10.1080/00423110701576130
  8. Rajamani, R.(2011), Vehicle dynamics and control, Springer Science & Business Media, 2011.
  9. Sandberg, A., Sivencrona, H. and Torngren, M.(2007), Setting requirements on speed and yaw rate in automotive sensor systems, Available at www.mecel.se/about/papers/20080527-DependableTargetSelection.pdf
  10. Vicente, M., Jorge, V. and Jorge, G.(2012), "Comparing Fuzzy and Intelligent PI Controllers in Stop-and-Go Manoeuvres", IEEE Transactions on Control Systems Technology, vol. 20, no. 3. pp.770-778. https://doi.org/10.1109/TCST.2011.2135859
  11. Wang, J. and Rajamani, R.(2004), "Should adaptive cruise control systems be designed to maintain a constant time gap between vehicles", IEEE Transactions on Vehicular Technology, vol. 53, no. 5, pp.1480-1490. https://doi.org/10.1109/TVT.2004.832386
  12. Yang, L., Chunyun, F., Xiaolin, T., Cong, G. and Minghui, H.(2020), "A Comparison of Mode Switching Strategies for Adaptive Cruise Control", 2020 4th CAA International Conference on Vehicular Control and Intelligence, Hangzhou, China, pp.465-470.
  13. Zhai, Y., Lingxi, L., Glenn, R. W. and Yaobin, C.(2011), "Design of switching strategy for adaptive cruise control under string stability constraints", In American Control Conference(ACC), IEEE, pp.3344-3349.
  14. Zhenhai, G.(2016), "Control mode switching strategy for ACC based on intuitionistic fuzzy set multi-attribute decision making method", Journal of Intelligent & Fuzzy Systems, vol. 31, no. 6, pp.2967-2974. https://doi.org/10.3233/JIFS-169181
  15. Zhou, J. and Peng, H.(2005), "Range policy of adaptive cruise control vehicles for improved flow stability and string stability", IEEE Transaction on Intelligent Transportation Systems, vol. 6, no. 2, pp.229-237. https://doi.org/10.1109/TITS.2005.848359