DOI QR코드

DOI QR Code

수지상 폴리(알릴렌 이써 설폰)에 도입된 지방족 알킬사슬 연결자길이에 따른 음이온교환막의 특성 연구

A Study on the Characteristics of Anion Exchange Membrane According to Aliphatic Alkyl Chain Spacer Length Introduced into Branched Poly (Arylene Ether Sulfone)

  • 김현진 (전북대학교 대학원 에너지저장.변환공학과(BK21 FOUR), 수소.연료전지연구센터) ;
  • 유동진 (전북대학교 대학원 에너지저장.변환공학과(BK21 FOUR), 수소.연료전지연구센터)
  • KIM, HYUN JIN (Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University) ;
  • YOO, DONG JIN (Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University)
  • 투고 : 2022.05.11
  • 심사 : 2022.06.21
  • 발행 : 2022.06.30

초록

Recently, research on the development of anion exchange membranes (AEMs) has received considerable attention from the scientific community around the world. Here, we fabricated a series of AEMs with branched structures with different alkyl spacers and conducted comparative evaluations. The introduction of these branched structures is an attempt to overcome the low ionic conductivity and stability problems that AEMs are currently facing. To this end, branched polymers with different spacer lengths were synthesized and properties of each membrane prepared according to the branched structure were compared. The chemical structure of the polymer was investigated by proton nuclear magnetic resonance, Fourier transform infrared, and gel permeation chromatography, and the thermal properties were investigated using thermogravimetric analysis. The branched anion exchange membrane with (CH2)3 and (CH2)6 spacers exhibited ionic conductivities of 8.9 mS cm-1 and 22 mS cm-1 at 90℃, respectively. This means that the length of the spacer affects the ionic conductivity. Therefore, this study showing the effect of the spacer length on the ionic conductivity of the membrane in the polymer structure constituting the ion exchange membrane is judged to be very useful for future application studies of AEM fuel cells.

키워드

과제정보

이 성과는 2020년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(No. 2020R1A2B5B01001458).

참고문헌

  1. H. Wang, J. Zhang, X. Ning, M. Tian, Y. Long, and S. Ramakrishna, "Recent advances in designing and tailoring nanofiber composite electrolyte membranes for high-performance proton exchange membrane fuel cells", Int. J. Hydrogen Energy, Vol. 46, No. 49, 2021, pp. 25225-25251, doi: https://doi.org/10.1016/j.ijhydene.2021.05.048.
  2. H. Y. Son, J. S. Han, and S. S. Yu, "Development of a multi-physics model of polymer electrolyte membrane muel cell using aspen custom modeler", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 6, 2021, pp. 489-496, doi: https://doi.org/10.7316/KHNES.2021.32.6.489.
  3. A. R. Kim, M. Vinothkannan, S. Ramakrishnan, B. H. Park, M. K. Han, and D. J. Yoo, "Enhanced electrochemical performance and long-term durability of composite membranes through a binary interface with sulfonated unzipped graphite nanofibers for polymer electrolyte fuel cells operating under low relative humidity", Appl. Surf. Sci., Vol. 593, 2022, pp. 153407, doi: https://doi.org/10.1016/j.apsusc.2022. 153407.
  4. J. Y. Chu, K. H. Lee, A. R. Kim, and D. J. Yoo, "Graphene-mediated organicinorganic composites with improved hydroxide conductivity and outstanding alkaline stability for anion exchange membranes", Composities Part B, Vol. 164, 2019, pp. 324-332, doi: https://doi.org/10.1016/j.compositesb.2018.11.084.
  5. G. Gupta, S. Sharma, and P. M. Mendes "Nafion-stabilised bimetallic Pt-Cr nanoparticles as electrocatalysts for proton exchange membrane fuel cells (PEMFCs)", RCS Advances, Vol. 6, No. 86, 2016, pp. 82635-82643, doi: https://doi.org/10.1039/C6RA16025E.
  6. B. H. Oh, A. R. Kim, and D. J. Yoo, "Profile of extended chemical stability and mechanical integrity and high hydroxide ion conductivity of poly(ether imide) based membranes for anion exchange membrane fuel cells", Int. J. Hydrogen Energy, Vol. 44, No. 8, 2019, pp. 4281-4292, doi: https://doi.org/10.1016/j.ijhydene.2018.12.177.
  7. S. K. Ryu, M. Vinothkannan, A. R. Kim, and D. J. Yoo, "Effect of type and stoichiometry of fuels on performance of polybenzimidazole-based proton exchange membrane fuel cells operating at the temperature range of 120-160 ℃'', Energy, Vol. 238, 2022, pp. 121791, doi: https://doi.org/10.1016/j.energy.2021.121791.
  8. W. E. Mustain, M. Chatenet, M. Page, and Y. S. Kim, "Durability challenges of anion exchange membrane fuel cells", Energy & Environmental Science, Vol. 13, No. 9, 2020, pp. 2805-2838, doi: https://doi.org/10.1039/D0EE01133A.
  9. D. R. Dekel, "Review of cell performance in anion exchange membrane fuel cells", J. Power Sources, Vol. 375, 2018, pp. 158-169, doi: https://doi.org/10.1016/j.jpowsour.2017.07.117.
  10. P. G. Santori, F. D. Speck, S. Cherevko, H. A. Firousjaie, X. Peng, W. E. Mustain, and F. Jaouen, "High performance FeNC and Mn-oxide/FeNC layers for AEMFC cathodes", J. Electrochem. Soc., Vol. 167, No. 13, 2020, pp. 134505, doi: https://doi.org/10.1149/1945-7111/ABB7E0.
  11. H. A. Firouzjaie and W. E. Mustain, "Catalytic advantages, challenges, and priorities in alkaline membrane fuel cells", ACS Catal., Vol. 10, No. 1, 2020, pp. 225-234, doi: https://doi.org/10.1021/acscatal.9b03892.
  12. G. Merle, M. Wessling, and K. Nijmeijer, "Anion exchange membranes for alkaline fuel cells: a review", Journal of Membrane Science, Vol. 377, No. 1-2, 2011, pp. 1-35, doi: https://doi.org/10.1016/j.memsci.2011.04.043.
  13. F. Xu, Y. Su, and B. Lin, "Progress of alkaline anion exchange membranes for fuel cells: the effects of micro-phase separation", Frontiers in Materials, Vol. 7, No. 4, 2020, pp. 1-7, doi: https://doi.org/10.3389/fmats.2020.00004.
  14. Y. Luo, Y. Wu, B. Li, T. Mo, Y. Li, S. P. Feng, J. Qu, and P. K. Chu, "Development and application of fuel cells in the automobile industry", Journal of Energy Storage, Vol. 42, 2021, pp. 103124, doi: https://doi.org/10.1016/j.est.2021.103124.
  15. J. Sang, L. Yang, Z. Li, F. Wang, Z. Wang, and H. Zhu, "Comb-shaped SEBS-based anion exchange membranes with obvious microphase separation morphology", Eelctrochimica Acta, Vol. 403, 2022, pp. 139500, doi: https://doi.org/10.1016/j.electacta.2021.139500.
  16. F. Liu, S. Wang, J. Li, X. Wang, Z. Yong, Y. Cui, D. Liang, and Z. Wang, "Novel double cross-linked membrane based on poly (ionic liquid) and polybenzimidazole for high-temperature proton exchange membrane fuel cells", Journal of Power Sources, Vol. 515, 2021, pp. 230637, doi: https://doi.org/10.1016/j.jpowsour.2021.230637.
  17. Q. Ge, X. Liang, L. Ding, J. Hou, J. Miao, B. Wu, Z. Yang, and T. Xu, "Guiding the selfassembly of hyperbranched anion exchange membranes utilized in alkaline fuel cells", Journal of Membrane Science, Vol. 573, 2019, pp. 595-601, doi: https://doi.org/10.1016/j.memsci.2018.12.049.
  18. K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Effect of functionalized SiO2 toward proton conductivity of composite membranes for PEMFC application", Int. J. Energy Res., Vol. 43, No. 10, 2019, pp. 5333-5345, doi: https://doi.org/10.1002/er.4610.
  19. J. Y. Chu, K. H. Lee, A. R. Kim, and D. J. Yoo, "Improved electrochemical performance of composite anion exchange membranes for fuel cells through cross linking of the polymer chain with functionalized graphene oxide", Journal of Membrane Science, Vol. 611, 2020, pp. 118385, doi: https://doi.org/10.1016/j.memsci.2020.118385.
  20. J. Liu, X. Yan, L. Gao, L. Hu, X. Wu, Y. Dai, X. Ruan, and G. He, "Long-branched and densely functionalized anion exchange membranes for fuel cells", Journal of Membrane Science, Vol. 581, 2019, pp. 82-92, doi: https://doi.org/10.1016/j.memsci.2019.03.046.
  21. K. Wang, Q. Wu, X. Yan, J. Liu, L. Gao, L. Hu, N. Zhang, Y. Pan, W. Zheng, and G. He, "Branched poly(ether ether ketone) based anion exchange membrane for H2/O2 fuel cell", Int. J. Hydrogen Energy, Vol. 44, No. 42, 2019, pp. 23750-23761, doi: https://doi.org/10.1016/j.ijhydene.2019.07.080.
  22. X. L. Gao, Q. Yang, H. Y. Wu, Q. H. Sun, Z. Y. Zhu, Q. G. Zhang, A. M. Zhu, and Q. L. Liu, "Orderly branched anion exchange membranes bearing long flexible multi-cation side chain for alkaline fuel cells", Journal of Membrane Science, Vol. 589, 2019, pp. 117247, doi: https://doi.org/10.1016/j.memsci.2019.117247.
  23. A. Sannigrahi, S. Takamura, and P. Jannasch, "Block copolymers combining semifluorinated poly(arylene ether) and sulfonated poly(arylene ether sulfone) segments for proton exchange membranes", Int. J. Hydrogen Energy, Vol. 39, No. 28, 2014, pp. 15718-15727, doi: https://doi.org/10.1016/j.ijhydene.2014.07.155.
  24. A. H. N. Rao, S. Y. Nam, and T. H. Kim, "Combshaped alkyl imidazolium-functionalized poly(arylene ether sulfone)s as high performance anionexchange membranes", Journal of Materials Chemistry A, Vol. 3, No. 16, 2015, pp. 8571-8580, doi: https://doi.org/10.1039/C5TA01123J.
  25. H. S. Dang and P. Jannasch, "Exploring different cationic alkyl side chain designs for enhanced alkaline stability and hydroxide ion conductivity of anion-exchange membranes", Macromolecules, Vol. 48, No. 16, 2015, pp. 5742-5751, doi: https://doi.org/10.1021/acs.macromol.5b01302.
  26. C. X. Lin, X. L. Huang, D. Guo, Q. G. Zhang, A. M. Zhu, M. L. Ye, and Q. L. Liu, "Side-chain-type anion exchange membranes bearing pendant quaternary ammonium groups via flexible spacers for fuel cells", J. Mater. Chem. A, Vol. 4, No. 36, 2016, pp. 13938-13948, doi: https://doi.org/10.1039/C6TA05090E.
  27. A. D. Mohanty, S. E. Tignor, J. A. Krause, Y. K. Choe, and C. Bae, "Systematic alkaline stability study of polymer backbones for anion exchange membrane applications", Macromolecules, Vol. 49, No. 9, 2016, pp. 3361-3372, doi: https://doi.org/10.1021/acs.macromol.5b02550.
  28. E. N. Hu, C. X. Lin, F. H. Liu, X. Q. Wang, Q. G. Zhang, A. M. Zhu, and Q. L. Liu, "Poly(arylene ether nitrile) anion exchange membranes with dense flexible ionic side chain for fuel cells", Journal of Membrane Science, Vol. 550, 2018, pp. 254-265, doi: https://doi.org/10.1016/j.memsci.2018.01.010.
  29. M. Niu, C. Zhang, G. He, F. Zhang, and X. Wu, "Pendent piperidinium-functionalized blend anion exchange membrane for fuel cell application", Int. J. Hydrogen Energy, Vol. 44, No. 29, 2019, pp. 15482-15493, doi: https://doi.org/10.1016/j.ijhydene.2019.04.172.
  30. X. Gong, X. Yan, T. Li, X. Wu, W. Chen, S. Huang, Y. Wu, D. Zhen, and G. He, "Design of pendent imidazolium side chain with flexible ether-containing spacer for alkaline anion exchange membrane", Journal of Membrane Science, Vol. 523, 2017, pp. 216-224, doi: https://doi.org/10.1016/j.memsci.2016.09.050.
  31. X. Q. Wang, C. X. Lin, F. H. Liu, L. Li, Q. Yang, Q. G. Zhang, A. M. Zhu, and Q. L. Liu, "Alkali-stable partially fluorinated poly(arylene ether) anion exchange membranes with a claw-type head for fuel cells", J. Mater. Chem. A, Vol. 6, No. 26, 2018, pp. 12455-12465, doi: https://doi.org/10.1039/C8TA03437K.
  32. Y. Xu, N. Ye, D. Zhang, Y. Yang, J. Yang, and R. He, "Imidazolium functionalized poly(aryl ether ketone) anion exchange membranes having star main chains or side chains", Renewable Energy, Vol. 127, 2018, pp. 910-919, doi: https://doi.org/10.1016/j.renene.2018.04.077.
  33. K. Wang, Z. Zhang, S. Li, H. Zhang, N. Yue, J. Pang, and Z. Jiang, "Side-chain-type anion exchange membranes based on poly(arylene ether sulfone)s containing high-density quaternary ammonium groups", ACS Appl. Mater. Interfaces, Vol. 13, No. 20, 2021, pp. 23547-23557, doi: https://doi.org/10.1021/acsami.1c00889.
  34. D. J. Yoo, S. H. Hyun, A. R. Kim, G. G. Kumar, and K. S. Nahm, "Novel sulfonated poly(arylene biphenylsulfone ether) copolymers containing bisphenylsulfonyl biphenyl moiety: structural, thermal, electrochemical and morphological characteristics", Polym. Int., Vol. 60, No. 1, 2011, pp. 85-92, doi: https://doi.org/10.1002/pi.2914.
  35. X. Li, K. Wang, D. Liu, L. Lin, and J. Pang, "Poly(arylene ether ketone) with tetra quaternary ammonium carbazole derivative pendant for anion exchange membrane", Polymer, Vol. 195, 2020, pp. 122456, doi: https://doi.org/10.1016/j.polymer.2020.122456.
  36. J. Y. Chu, A. R. Kim, K. S. Nahm, H. K. Lee, and D. J. Yoo, "Synthesis and characterization of partially fluorinated sulfonated poly(arylene biphenylsulfone ketone) block copolymers containing 6FBPA and perfluorobiphenylene units", Int. J. Hydrogen Energy, Vol. 38, No. 14, 2013, pp. 6268-6274, doi: https://doi.org/10.1016/j.ijhydene.2012.11.144.
  37. A. N. Lai, P. C. Hu, J. W. Zheng, S. F. Zhou, L. Zhang, "Fluorene-containing poly(arylene ether sulfone nitrile)s multiblock copolymers as anion exchange membranes", Int. J. Hydrogen Energy, Vol. 44, No. 44, 2019, pp. 24256-24266, doi: https://doi.org/10.1016/j.ijhydene.2019.07.134.
  38. J. S. Olsson, T. H. Pham, and P. Jannasch, "Tuning poly(arylene piperidinium) anionexchange membranes by copolymerization, partial quaternization and crosslinking", Journal of Membrane Science. Vol. 578, 2019, pp. 183-195, doi: https://doi.org/10.1016/j.memsci.2019.01.036.
  39. S. Gahlot and V. Kulshrestha, "Dramatic improvement in water retention and proton conductivity in electrically aligned functionalized CNT/SPEEK nanohybrid PEM", ACS Appl. Mater. Interfaces, Vol. 7, No. 1, 2015, pp. 264-272, doi: https://doi.org/10.1021/am506033c.
  40. M. Fang, D. Liu, S. Neelakandan, M. Xu, D. Liu, and L. Wang, "Sidechain effects on the properties of highly branched imidazoliumfunctionalized copolymer anion exchange membranes", Applied Surface Science, Vol. 493, 2019, pp. 1306-1316, doi: https://doi.org/10.1016/j.apsusc.2019.07.059.
  41. D. Liu, M. Xu, M. Fang, J. Chen, and L. Wang, "Branched comb-shaped poly(arylene ether sulfone)s containing flexible alkyl imidazolium side chains as anion exchange membranes", J. Mater. Chem. A, Vol. 6, No. 23, 2018, pp. 10879, doi: https://doi.org/10.1039/C8TA02115E.
  42. K. D. Kreuer, A. Rabenau, and W. Weppner, "Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors", Angewandte Chemie, Vol. 21, No. 3, 1982, pp. 208-209, doi: https://doi.org/10.1002/anie.198202082.
  43. K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Simultaneous improvement of anion conductivity and cell durability through the formation of dense ion clusters of F-doped graphitic carbon nitride/quaternized poly(phenylene oxide) composite membrane", Journal of Membrane Science, Vol. 650, 2022, pp. 120384, doi: https://doi.org/10.1016/j.memsci.2022.120384.