DOI QR코드

DOI QR Code

자발적 환원반응에 의한 음이온 교환막 수전해용 Pt-Ni 나노 촉매 제조 및 특성

Preparation and Characterization of Pt-Ni Nanocatalyst for Anion Exchange Membrane in Alkaline Electrolysis by Spontaneous Reduction Reaction

  • 장붕비 (우석대학교 에너지전기공학과) ;
  • 이재영 (우석대학교 수소연료전지 부품 및 응용기술 지역혁신센터) ;
  • 이홍기 (우석대학교 에너지전기공학과)
  • ZHANG, PENGFEI (Department of Energy & Electrical Engineering, Woosuk University) ;
  • LEE, JAEYOUNG (Hydrogen Fuel Cell Regional Innovation Center, Woosuk University) ;
  • LEE, HONGKI (Department of Energy & Electrical Engineering, Woosuk University)
  • 투고 : 2022.04.26
  • 심사 : 2022.06.10
  • 발행 : 2022.06.30

초록

Pt-Ni nanocatalysts were loaded on carbon black by spontaneous reduction reaction of platinum (II) acetylacetonate and nickel (II) acetylacetonate, and they were characterized by transmission electron microscopy (TEM), thermogravimetric analyzer (TGA), energy dispersive x-ray analyzer (EDS), BET surface area and fuel cell test station. The distribution of the Pt and Ni nanoparticles was observed by TEM, and the loading weight of Pt-Ni nanocatalysts on the carbon black was measured by TGA. The elemental ratio of Pt and Ni was estimated by EDS. It was found that the loading weight of Pt-Ni nanoparticles was 5.54 wt%, and the elemental ratio of Pt and Ni was 0.48:0.35. Specific surface area was measured by BET analysis instrument and I-V characteristics were estimated.

키워드

과제정보

본 연구는 2020년도 산업통상자원부의 산업기술혁신사업의 연구비 지원을 받아 수행된 연구이다(No. 20203030030040).

참고문헌

  1. J. M. Han, J. W. Kim, K. K. Bae, C. S. Park, S. U. Jeong, K. J. Jung, K. S. Kang, and Y. H. Kim, "Intermittent operation induced deactivation mechanism for HER of Ni-Zn-Fe electrode for alkaline electrolysis", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 1, 2020, pp. 8-22, doi: https://doi.org/10.7316/KHNES.2020.31.1.8.
  2. K. W. Cho, Y. H. Lee, J. H. Han, J. S. Yu, and T. W. Hong, "Composite TiN-Al203 syntheses and hydrogen permeability characteristics evaluation", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 2, 2020, pp. 177-183, doi: https://doi.org/10.7316/KHNES.2020.31.2.177.
  3. J. H. Ryu, "Global hydrogen economy-HYDROGENomics: full-scale marketpernetration", Global Industry Analysis, 2021. Retrieved from https://securities.miraeasset.com/bbs/download/2088677.pdf?attachmentId=2088677.
  4. B. R. Lee, H. J. Lee, J. H. Heo, C. W. Moon, and H. K. Lim, "Stochastic techno-economic analysis of H2 production from power-to-gas using a highpressure PEM water electrolyzer for a small-scale H2 fueling station", Sustainable Energy & Fuels, Vol. 3, No. 9, 2019, pp. 2521-2529, doi: https://doi.org/10.1039/C9SE00275H.
  5. J. Chi and H. Yu, "Water electrolysis based on renewable energy for hydrogen production", Chinese Journal of Catalysis, Vol. 39, No. 3, 2018, pp. 390-394, doi: https://doi.org/10.1016/S1872-2067(17)629498.
  6. S. Trasatti, "Water electrolysis: who first?", J. Electroanal. Chem., Vol. 476, No. 1, 1999, pp. 90-91, doi: https://doi.org/10.1016/S00220728(99)00364-2.
  7. R. Gazey, S. K. Salman, and D. D. Aklil-D'Halluin, "A field application experience of integrating hydrogen technology with wind power in a remote island location", J. Power Sources, Vol. 157, No. 2, 2006, pp. 841-847, doi: https://doi.org/10.1016/j.jpowsour.2005.11.084.
  8. M. S. Naughton, F. R. Brushett, and P. J. A. Kenis, "Carbonate resilience of flowing electrolyte-based alkaline fuel cells", J. Power Sources, Vol. 196, No. 4, 2011, pp. 1762-1768, doi: https://doi.org/10.1016/j.jpowsour.2010.09.114.
  9. M. J. Jang, M. S. Won, K. H. Lee, and S. M. Choi, "Optimization of operating parameters and components for water electrolysis using anion exchange membrane", J. Korean Inst. Surf. Eng., Vol. 49, No. 2, 2016, pp. 159-165, doi: https://doi.org/10.5695/JKISE.2016.49.2.159.
  10. H. S. Cho, W. C. Cho, and C. H. Kim, "Low-temperature alkaline water electrolysis", KIC News, Vol. 21, No. 8, 2018, pp. 23. Retrieved from https://www.cheric.org/PDF/PIC/PC21/PC21-5-0023.pdf.
  11. A. Kiani and S. Hatami, "Fabrication of platinum coated nanoporous gold film electrode: a nanostructured ultra low-platinum loading electrocatalyst for hydrogen evolution reaction", Int. J. Hydrogen Energy, Vol. 35, No. 11, 2010, pp. 5202-5209, doi: https://doi.org/10.1016/j.ijhydene.2010.03.014.
  12. V. Vij, S. Sultan, A. M. Harzandi, A. Meena, J. N. Tiwari, W. G. Lee, T. Yoon, and K. S. Kim, "Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions", ACS Catal., Vol. 7, No. 10, 2017, pp. 7196-7225, doi: https://doi.org/10.1021/acscatal.7b01800.
  13. J. Y. Lee, D. Yin, and S. Horiuchi, "Site and morphology controlled ZnO deposition on Pd catalyst prepared from Pd/PMMA thin film using UV lithography", Chem. Mater., Vol. 17, No. 22, 2005, pp. 5498-5503, doi: https://doi.org/10.1021/cm0506555.
  14. J. Y. Lee, Y. Liao, R. Nagahata, and S. Horiuchi, "Effect of metal nanoparticles on thermal stabilization of polymer/metal nanocomposites prepared by a one-step dry process", Polymer, Vol. 47, No. 23, 2006, pp. 7970-7979, doi: https://doi.org/10.1016/j.polymer.2006.09.034.
  15. T. O. Kang, K. I. Lee, and J. K. Yoon, "The reduction mechanism of nickel oxide with graphite", Korean Journal of Metals and Materials, Vol. 15, No. 2, 1977, pp. 147-155. Retrieved from http://www.kjmm.or.kr/past/view_kiss.asp?a_key=133876#.
  16. L. X. Lu, G. X. Dai, J. Y. Lee, and H. K. Lee, "Effect of the mixture ratio of NiPt nanocatalysts on water electrolysis characteristics in AEM system", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 5, 2021, pp. 285-292, doi: https://doi.org/10.7316/KHNES.2021.32.5.285.
  17. G. X. Dai, L. X. Lu, J. Y. Lee, and H. K. Lee, "Preparation and characterization of Fe/Ni nanocatalyst in a nucleophilic solvent for anion exchange membrane in alkaline electrolysis", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 5, 2021, pp. 293-298, doi: https://doi.org/10.7316/KHNES.2021.32.5.293.
  18. A. R. Kim, M. Vinothkannan, S. R amakrishnan, B. H. Park, M. K. Han, and D. J. Yoo, "Enhanced electrochemical performance and longterm durability of composite membranes through a binary interface with sulfonated unzipped graphite nanofibers for polymer electrolyte fuel cells operating under low relative humidity", Applied Surface Science, Vol. 593, 2022, pp. 153407, doi: https://doi.org/10.1016/j.apsusc.2022.153407.
  19. A. R. Kim, M. Vinothkannan, K. H. Lee, J. Y. Chu, B. H. Park, M. K. Han, and D. J. Yoo, "Enhanced performance and durability of composite membranes containing anatase titanium oxide for fuel cells operating under low relative humidity", Int. J. Energy Res., Vol. 46, No. 4, 2022, pp. 4835-4851, doi: https://doi.org/10.1002/er.7477.
  20. N. Logeshwaran, L. R. Panneerselvam, S. Ramakrishnan, R. S. Kumar, A. R. Kim, Y. Wang, and D. J. Yoo, "Quasihexagonal platinum nanodendrites decorated over CoS2-N-doped reduced graphene oxide for electro-oxidation of C1-, C2-, and C3-type alcohols", Advanced Science, Vol. 9, No. 8, 2022, pp. 2105344, doi: https://doi.org/10.1002/advs.202105344.
  21. R. S. Kumar, S. Ramakrishnan, S. Prabhakaran, A. R. Kim, D. R. Kumar, D. H. Kim, and D. J. Yoo, "Structural, electronic, and electrocatalytic evaluation of spinel transition metal sulfide supported reduced graphene oxide", J. Mater. Chem. A, Vol. 10, No. 4, 2022, pp. 1999-2011, doi: https://doi.org/10.1039/D1TA08224H.
  22. A. Kobyashi, T. Fujii, K. Takeda, K. Tamoto, K. Kakinuma, and M. Uchida, "Effect of Pt loading percentage on carbon blacks with large interior nanopore volume on the performance and durability of polymer electrolyte fuel cells", ACS Appl. Energy Mater., Vol. 5, No. 1, 2022, pp. 316-329, doi: https://doi.org/10.1021/acsaem.1c02836.