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Human babesiosis is an emerging tick-borne zoonotic dis-
ease and a new global threat affecting human health. It is 
caused by infection with intraerythrocytic parasites of the ge-
nus Babesia [1]. Healthy people who naturally infected are al-
ways asymptomatic, and even immunocompetent patients are 
mild or subclinical. However, low-grade or asymptomatic par-
asitemia may persist for years [2]. Babesia parasites are trans-
mitted to humans and animals by ixodid ticks. Babesia microti 
has become a high-risk pathogen that is transmitted by blood 
transfusion, particularly in the northeast and upper mid-west 
of the United States [3]. The prevalence of Babesia spp. in Chi-
na is currently underestimated due to the lack of epidemiolog-
ical data. Sensitive screening and diagnostic methods are 
needed to define the impact of this parasite. Multiple method-
ologies have been used to detect B. microti. Microscopic exami-
nation, antibody/antigen assays, and nucleic acid tests (NAT) 
exhibited different sensitivity and specificity during the differ-
ent stages of B. microti infection [4]. Although microscopic ex-
amination, as the “gold standard” method, has widely been 

used to confirm the parasitic infection, its low sensitivity limits 
its use in blood donors with low levels of parasitemia [5]. The 
indirect immunofluorescence assay (IFA) is the most widely 
used serological method, but IFAs differ in which antibody 
class or classes are detected and in cutoff titers are determined 
by hand [6]. Furthermore, IFAs fail to distinguish between 
present (active) and past (resolved) infections. The application 
of NAT technology, including polymerase chain reaction 
(PCR) [7] and transcription-mediated amplification (TMA) [8] 
for blood screening has dramatically reduced the risk of trans-
fusion infection worldwide [9]. However, the cost-effectiveness 
of NAT, particularly in resource-constrained countries, limits 
the implementation. Even in the United States, where B. micri-

oti infection is the major cause of transfusion-transmitted ba-
besiosis, NAT is selectively implemented only in epidemic ar-
eas [10].

It is therefore necessary to develop cheaper molecular 
screening methods as an alternative to PCR. Several detection 
systems have been developed and used for routine detection, 
including loop-mediated isothermal amplification (LAMP) 
[11] and recombinase polymerase amplification (RPA) [12]. 
Recombinase-aided amplification (RAA) is a novel nucleic 
acid isothermal amplification technology. The basic RAA sys-
tem includes recombinase UvsX, single-stranded DNA binding 
protein, and a DNA polymerase (all from E. coli). With high 
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sensitivity, specificity, and simplicity, it can rapidly detect nu-
cleic acids under non-laboratory conditions. Thus, RAA has 
widely been used in the detection of several pathogens and the 
amplified products can be detected by agarose gel electropho-
resis, a real-time fluorescence detection platform or a lateral 
flow strip (LFS). In the current study, we established and evalu-
ated a rapid and simple fluorescence RAA (fRAA) assay for de-
tecting B. microti infection.

Many molecular assays are used to screen and differentiate 
parasites infections and they always amplify the 18S rRNA 
gene, which allows for detection of a broad-range of Babesia 
spp. The mitochondrial genome in apicomplexan parasites, 
including Babesia, Theileria, Plasmodium spp., and Toxoplasma 
gondii, has similar structure [13]. Among the 4 distinct mito-
chondrial genes, cytochrome oxidase c subunit I (cox1) is evo-
lutionarily conserved and presents in a larger copy number 
than the chromosomal genes [14]. The sequences of B. microti 
cox1 gene in NCBI are highly homologous (100%) by MegA-
lign in Lasergene 7.1 (DNAStar, Madison, Wisconsin, USA) 
among B. microti strains but different from other apicomplex-
an parasites, making it a valuable target for molecular detec-
tion.

The recombinant plasmid containing a 500 bp fragment of 
the cox1 gene (GenBank No. LC005813.1) (nt 263-762) were syn-
thesized, cloned to the pUC57 vector (designated on pUC57- 
cox1), and used as the standard positive template for fRAA as-
say. Several forward and reverse RAA primers were designed 
(Supplementary Table S1) and different primer pairs were op-
timized by a commercial RAA kit (Qitian, Wuxi, China). The 
amplified products ranging from 170 to 239 bp were screened 
using 1.5% agarose gel electrophoresis. After screening, the 
best primer pairs were chosen (Supplementary Fig. S1). The 
forward primer was labeled with FAM at the 5ʹ-end (5ʹ-FAM- 
CTTGGTCTATCTATATAACATCTGTGTTATTG-3ʹ) and the re-
verse primer was labeled with BHQ-1 at the 3ʹ-end (5ʹ-CTGGA
TGTCCAAAGACCCAGAATAGATGCCGAT-BHQ-1-3ʹ). The 
probe was designed by adding a fluorescence FAM on the 31st 
base (T) from the 5ʹ-end, an internal tetrahydrofuran residue 
(THF) on the 32nd base (C), BHQ1 on the 33rd base (T), and 
a C3 spacer (SpC3) at the 3ʹ-end (5ʹ-CATGCTTCTTGCTGATAG
GCACTATAACAC [FAM-dT] C [THF] T [BHQ1-dT] GCTATTTG 
ATCCTAC-3ʹ SpC3). All primers and probe used for fRAA assay 
were synthesized by Sangon Biotech (Shanghai, China).

The fRAA assays were performed in 50 μl using a commer-
cial fluorescence RAA kit according to the manual supplied by 

the manufacturer (Qitian, Wuxi, China). The reaction mixtures 
contained 2 µl of plasmid DNA, 25 µl of reaction buffer, 15.7 
µl of DNase-free distilled water, 2.1 µl of primer F (10 µM), 2.1 
µl of primer R (10 µM), 0.6 µl of the probe (10 µM), and 2.5 
µl of 280 mM magnesium acetate. The reaction mixture was 
added to a tube containing the RAA enzyme mix (SSB, 800 
ng/µl; UvsX, 120 ng/µl; DNA polymerase, 30 ng/µl) in a ly-
ophilized form. The tubes were then transferred to a QT-
F7200-0001 fluorescence detector (Qitian) at 37˚C for 20 min. 
The fRAA developed could detect 10 copies/µl recombinant 
plasmids in each experiment (Fig. 1A). Approximately 100 
copies of 18S rRNA gene in a real-time PCR can be reliably de-
tected [7].

Copy number analysis using southern hybridization esti-
mated approximately 20 copies of the mitochondrial genome 
per haploid nuclear genome of B. microti [14], which suggested 
the limit of detection (LOD) was about 0.5 parasite/µl. Thus, 
the assay was up to 200-fold more sensitive than Giemsa-
stained blood smear, which was estimated to be 10-50 para-
sites/µl under ideal conditions, but about 100 parasites/µl for 
routine diagnostic screening [16]. Our result showed that the 
fRAA assay had favorable sensitivity. In a recent study, LFD-
RPA exhibited a slightly higher sensitivity of 0.25 parasite/µl 
blood [12].

Blood from the B. microti infected (ATCC, strain PRA-99) 
BALB/c mice (IACUC approval number: SCXK Hu 2017-0012) 
which was gifted generously by the National Institute of Para-
sitic Diseases (NIPD), Chinese Center for Disease Control and 
Prevention (Shanghai, China). Genomic DNA was extracted 
from 200 µl diluted blood using the QIAamp DNA Mini Kit 
(Qiagen, Shanghai, China) according to the manufacturer’s 
instructions. Sensitivity of fRAA was evaluated on a graded se-
ries of B. microti genomic DNA contents (106-10-1fg/µl). To veri-
fy the reproducibility, the sensitivity test was repeated 3 times 
with the samples collected in 7-day intervals. By fRAA, a per-
fect detection was obtained with 4 series of diluted samples 
(104, 103, 102, and 10 fg/µl) of genomic DNA (Fig. 1C). The 
lowest detection level was 10 fg/µl genomic DNA. Nested-PCR 
targeted 18S rRNA gene also detected at least 10 fg/µl in the 
second PCR (Fig. 1B). fRAA was less sensitive than the 18S 
rRNA nested-PCR assay, but had a shorter time to detect sam-
ples (20 min vs. more than 2 h).

Other transfusion transmitted parasites elicit similar inflam-
matory responses as well as clinical manifestations, and they 
exhibit comparable morphologies under microscope. Some-
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times it may be difficult to distinguish these parasites from B. 
microti [17]. We selected 10 apicomplexan parasites to test the 
specificity of the fRAA assay for B. microti, including 2 species 
of Babesia (B. microti and B. gibsoni), Toxoplasma gondii, 2 spe-
cies of Leshimania (L. infantum and L. donovani), Entamoeba his-

tolytica, and 4 species of Plamodium (P. vivax, P. falciparum, P. 
malariae, and P. ovale). These parasites were collected or donat-
ed from our blood center, and the NIPD, China CDC. Fig. 2 
showed successful amplification of B. microti genomic DNA, 
but no bands and fluorescent signals were observed with other 

pathogenic protozoan genomic DNAs by nested PCR (Fig. 2A) 
and fRAA (Fig. 2B), indicating that fRAA primers and probe 
were highly specific to B. microti.

One hundred and sixty blood samples were obtained from 
our previous work [18], with the permission of corresponding 
blood donors and the ethics committee of Jiangsu Province 
Blood Center (RIB NO. 2019003). These blood donors were 
all foreign international students who were from East Asia and 
Africa. These samples, which had been detected negative by 
nested PCR targeted 18S rRNA gene using different primer 

Fig. 1. Sensitivity of fRAA assay targeted cox1 compared 
to nested PCR targeted 18S rRNA gene. (A) Sensitivity 
evaluated by a recombinant plasmid diluted from 103 to 10 
copies/µl. The lowest detection level was 10 copies/µl. (B) 
Sensitivity of nested PCR as evaluated using the diluted B. 
microti genomic DNA (Lane1-9: 106, 105, 104, 103, 102, 101, 
100, and 10-1 fg/µl and negative control). The second PCR 
products on the agarose gel showed that the detection 
sensitivity was 10 fg/µl. (C) Sensitivity of fRAA was evaluat-
ed using serially diluted B. microti genomic DNA (104, 103, 
102, 101, 100, 10-1 fg/µl and negative control). The sensitivity 
of fRAA was 10 fg/µl.
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Fig. 2. Specificity of nested PCR (A) and fRAA assay (B). (A) Lane 1: B. microti; 2: Toxoplasma gondi; 3: Babesia gibsoni; 4: Leshimania 
infantum; 5: Leshimania donovani; 6: Entamoeba histolytica; 7: P. vivax; 8: P. malariae; 9: P. falciparum; 10: P. ovale. Only B. microti DNA 
showed a band on the agarose gel. (B) B. microti DNA showed specific fluorescent signal, while no signal was observed with other par-
asites DNA.
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pairs [18], were subjected to fRAA and we found that no sam-
ple was positive for B. microti.

  Though the incidence of human babesiosis is very low in 
China [19], recent investigations have reported B. microti infec-
tion in small mammals [20,21] and humans [22]. A suspected 
transfusion transmitted B. microti infection had also been re-
ported in a transfused patient [23]. The prevalence of Babesia 
spp. among Chinese blood donors was very low [18,24], but 
further investigation and evaluation are needed. This study es-
tablished a fRAA assay capable of detecting B. microti within 20 
min at 37˚C using a portable fluorescence detector. Our fRAA 
assay exhibited reasonable diagnostic performance and pro-
vided a simple, rapid, and reliable method for the detection of 
B. microti. 
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