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BERNSTEIN-TYPE INEQUALITIES PRESERVED BY MODIFIED

SMIRNOV OPERATOR

Wali Mohammad Shah† and Bhat Ishrat Ul Fatima∗

Abstract. In this paper we consider a modified version of Smirnov operator and
obtain some Bernstein-type inequalities preserved by this operator. In particular,
we prove some results which in turn provide the compact generalizations of some
well-known inequalities for polynomials.

1. Introduction

Let Pn denote the class of polynomials f(z) =
∑n

j=0 ajz
j in C of degree atmost

n ∈ N. Let D be the open unit disk {z ∈ C; |z| < 1}, so that D is its closure and δD
denotes the boundary. For any polynomial f ∈ Pn, we have the following result due
to Bernstein [3].

Theorem 1.1. Let f ∈ Pn, then

(1) max
z∈δD
|f ′

(z)| ≤ nmax
z∈δD
|f(z)|.

The result is best possible and equality holds for the polynomials having zeros at the
origin.

Aziz and Dawood proved that if f(z) has all its zeros in D, then

(2) min
z∈δD
|f ′

(z)| ≥ nmin
z∈δD
|f(z)|

and for R ≥ 1

(3) min
z∈δD
|f(Rz)| ≥ Rn min

z∈δD
|f(z)|.

Inequalities (2) and (3) are sharp and equality holds for the polynomials having all
zeros at the origin.
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For the class of polynomials having no zeros in D, inequality (1.1) can be sharpened.
In fact , if f(z) 6= 0 in D, then

(4) max
z∈δD
|f ′

(z)| ≤ n

2
max
z∈δD
|f(z)|

and for R > 1,

(5) max
z∈δD
|f(Rz)| ≤

(
Rn + 1

2

)
max
z∈δD
|f(z)|.

Inequality (4) was conjectured by Erdös and later verified by Lax [8], whereas Ankeny
and Rivilin [1] used (4) to prove (5). Inequalities (4) and (5) were further improved
by Aziz and Dawood [2], where under the same hypothesis, it was shown that

(6) max
z∈δD
|f ′

(z)| ≤ n

2

{
max
z∈δD
|f(z)| −min

z∈δD
|f(z)|

}
and for R > 1

(7) max
z∈δD
|f(Rz)| ≤

(
Rn + 1

2

)
max
z∈δD
|f(z)| −

(
Rn − 1

2

)
min
z∈δD
|f(z)|.

Equality in (4)-(7) holds for the polynomials of the form f(z) = αzn+β, with |α| = |β|.
In 1930 Bernstein [4] also proved the following result:

Theorem 1.2. Let F (z) be a polynomial in Pn having all zeros in D and f(z) be
a polynomial of degree not exceeding that of F (z). If |f(z)| ≤ |F (z)| on δD, then

|f ′
(z)| ≤ |F ′

(z)| for z ∈ C \ D.
Equality holds only if f = eiγF, γ ∈ R.

For z ∈ C \ D, denoting by Ω|z| the image of the disc {t ∈ C; |t| ≤ |z|} under the

mapping ψ(t) =
t

1 + t
, Smirnov [9] as a generalization of Theorem 1.2 proved the

following:

Theorem 1.3. Let f and F be polynomials possessing conditions as in Theorem
1.2. Then for z ∈ C \ D
(8) |Sα[f ](z)| ≤ |Sα[F ](z)|

for all α ∈ Ω|z|, with Sα[f ](z) := zf
′
(z)− nαf(z), where α is a constant.

For α ∈ Ω|z| in (8) equality holds at a point z ∈ C \ D only if f = eiγF, γ ∈ R.

We note that for fixed z ∈ C \ D, (8) can be replaced by (see for reference [6])

|zf ′
(z)− n az

1 + az
f(z)| ≤ |zF ′

(z)− n az

1 + az
F (z)|,

where a is arbitrary number from D.
Equivalently for z ∈ C \ D

|S̃a[f ](z)| ≤ |S̃a[F ](z)|
where S̃a[f ](z) = (1 + az)f

′
(z)− naf(z) is known as modified Smirnov operator.

The modified Smirnov operator S̃a is more preferred in a sense than Smirnov oper-
ator Sα, because the parameter a of S̃a does not depend on z unlike parameter α of Sα.
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2. Main Results

Before writing our main results, we prove the following lemmas which are required
for their proofs.

Lemma 2.1. Let F ∈ Pn, and has all zeros in D. Let a ∈ δD be not the exceptional
value for F . Then all zeros of S̃a[F ] lie in D.

The above lemma is due to Ganenkova and Starkov [6].

Lemma 2.2. If f ∈ Pn, such that f(z) 6= 0 in D, then

(9) |S̃a[f ](z)| ≤ |S̃a[g](z)| for z ∈ C \ D,

where g(z) = znf(1
z̄
).

Proof. Since g(z) = znf(1
z̄
), therefore |g(z)| = |f(z)| for z ∈ δD, and hence

g(z)

f(z)
is

analytic in D. By Maximum Modulus Principle, we have

|g(z)| ≤ |f(z)| for z ∈ D.

Or equivalently,

|f(z)| ≤ |g(z)| for z ∈ C \ D.

Therefore for every β with |β| > 1, the polynomial f(z) − βg(z) has all zeros in

C\D. By Lemma 2.1, S̃a[f −βg](z) has all its zeros in D. Since S̃a is linear, therefore

S̃a[f ](z)− βS̃a[g](z) has all its zeros in D, which in particular gives

|S̃a[f ](z)| ≤ |S̃a[g](z)| for z ∈ C \ D.

Because, if this is not true, then there exists some z0 with z0 ∈ C \ D, such that

|S̃a[f ](z0)| > |S̃a[g](z0)|.

Choosing β =
S̃a[f ](z0)

S̃a[g](z0)
, so that |β| > 1. For this value of β, S̃a[f ](z)− βS̃a[g](z) = 0

for some z = z0 ∈ C \ D, which is a contradiction. Therefore

|S̃a[f ](z)| ≤ |S̃a[g](z)| for z ∈ C \ D.

Lemma 2.3. If f ∈ Pn with |f(z)| ≤M for z ∈ δD. Then

|S̃a[f ](z)| ≤M|S̃a[zn]| for z ∈ C \ D.

Proof. Since |f(z)| ≤M for z ∈ δD. If λ is a complex number with |λ| > 1. Then

|f(z)| < |λMzn| for z ∈ δD.
Since λMzn has all zeros in D, therefore by Rouche’s theorem all zeros of f(z)−λMzn

lie in D. Hence by Lemma 2.1, all zeros of S̃a[f(z)−λMzn] lie in D. Since S̃a is linear,

it follows that S̃a[f ](z)− S̃a[λMzn] has all zeros in D.
This gives

(10) |S̃a[f ](z)| ≤M|S̃a[zn]| for z ∈ C \ D.
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Because if this is not true, then there exists some z0 ∈ C \ D, such that

|S̃a[f ](z0)| >M|S̃a[zn0 ]|.

Choosing λ =
S̃a[f ](z0)

MS̃a[zn0 ]
, so that |λ| > 1. With this choice of λ, we get a contradiction

and hence (10) is true.

Lemma 2.4. If f ∈ Pn, then for z ∈ C \ D

(11) |S̃a[f ](z)|+ |S̃a[g](z)| ≤ {|S̃a[zn]|+ n|a|}max
|z|=1
|f(z)|,

where g(z) = znf(1
z̄
).

Proof. Let M = max
z∈δD
|f(z)|, then |f(z)| ≤M for z ∈ D.

If λ is any real or complex number with |λ| > 1, then by Rouche’s theorem

P (z) = f(z)− λM

does not vanish in D. Hence by Lemma 2.2

|S̃a[P ](z)| ≤ |S̃a[Q](z)| for z ∈ C \ D,

where

Q(z) = znP (
1

z
)

= znf

(
1

z

)
− znλM

= g(z)− λMzn.

That is

|S̃a[f ](z)−MλS̃a[1]| ≤ |S̃a[g](z)−MλS̃a[zn]| for z ∈ C \ D.

Using the fact S̃a[1] = −na, we get

|S̃a[f ](z)−Mλ(−na)| ≤ |S̃a[g](z)−MλS̃a[zn]| for z ∈ C \ D.

This gives

|S̃a[f ](z)| − |naMλ| ≤ |S̃a[g](z)−MλS̃a[zn]| for z ∈ C \ D.

Choosing argument of λ suitably, which is possible by Lemma 2.3, we get

|S̃a[f ](z)| − nM|a||λ| ≤M|λ||S̃a[zn]| − |S̃a[g](z)| for z ∈ C \ D.

Making |λ| → 1, we get

|S̃a[f ](z)|+ |S̃a[g](z)| ≤ {n|a|+ |S̃a[zn]}M.

This proves Lemma 2.4.

We now prove the following result which is a compact generalization of inequalities
(2) and (3).
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Theorem 2.5. If f ∈ Pn with f(z) 6= 0 in C \ D. Then

(12) |S̃a[f ](z)| ≥ |S̃a[zn]|min
z∈δD
|f(z)|.

Equivalently

(13) |(1 + az)f
′
(z)− naf(z)| ≥ n|z|n−1 min

z∈δD
|f(z)|.

The result is best possible and equality holds for the polynomial f(z) = czn; |c| 6= 0.

Proof. If f(z) has a zero on δD, then there is nothing to prove as min
z∈δD
|f(z)| = 0.

Suppose all zeros of f(z) lie in D, then min
z∈δD
|f(z)| = m > 0 and we have

m ≤ |f(z)| for z ∈ δD.

Equivalently for every λ with |λ| < 1, we have

(14) |mλzn| < |f(z)| for z ∈ δD.

Therefore by Rouche’s theorem it follows that all zeros of f(z)− λmzn lie in D. This

gives by Lemma 2.1 that all the zeros of S̃a[f(z)−λmzn] and hence S̃a[f ](z)−mλS̃a[zn]
lie in D.
This implies

(15) m|S̃a[zn]| ≤ |S̃a[f ](z)| for z ∈ C \ D.

Because if this is not true then there exists a point z0 ∈ C \ D, such that

m|S̃a[zn0 ]| > |S̃a[f ](z0)|.

We take λ =
S̃a[f ](z0)

mS̃a[zn0 ]
, so that |λ| < 1. For this value of λ, S̃a[f ](z)−mλS̃a[zn] = 0

for some z = z0 ∈ C \ D. This is a contradiction and hence we conclude

(16) |S̃a[f ](z)| ≥ |S̃a[zn]|min
z∈δD
|f(z)| for z ∈ C \ D.

This completes proof of Theorem 2.5.

Remark 2.6. If we choose a = 0 in (13), we get

|f ′
(z)| ≥ n|z|n−1 min

z∈δD
|f(z)| for z ∈ C \ D.

This in particular gives inequality (2).
Next choosing a = −1

z
in inequality (13), we get for z ∈ C \ D

|f(z)| ≥ |z|n min
z∈δD
|f(z)|.

Taking in particular z = Reiθ, 0 ≤ θ < 2π, R ≥ 1, we get for z ∈ δD

|f(Rz)| ≥ Rn min
z∈δD
|f(z)|,

which is equivalent to (3).

The next result we prove, gives a compact generalization of inequalities (4) and
(5).
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Theorem 2.7. If f ∈ Pn, with f(z) 6= 0 in D. Then for z ∈ C \ D

(17) |S̃a[f ](z)| ≤ 1

2
{|S̃a[zn]|+ n|a|}max

z∈δD
|f(z)|.

Or, equivalently

(18) |(1 + az)f
′
(z)− naf(z)| ≤ 1

2
{n|z|n−1 + n|a|}max

z∈δD
|f(z)|.

The result is best possible and equality holds for the polynomials having all zeros on
unit disk.

Proof. Note that f(z) is a polynomial not vanishing inside D. Therefore, if g(z) =

znf(1
z
), then by Lemma 2.2

2|S̃a[f ](z)| ≤ |S̃a[f ](z)|+ |S̃a[g](z)| for z ∈ C \ D.

Using Lemma 2.4, we get

2|S̃a[f ](z)| ≤ |S̃a[f ](z)|+ |S̃a[g](z)|
≤ {n|a|+ |S̃a[zn]|}max

z∈δD
|f(z)|.

That is

(19) |S̃a[f ](z)| ≤ 1

2
{|S̃a[zn]|+ n|a|}max

z∈δD
|f(z)|.

This proves Theorem 2.7.

Remark 2.8. If we choose a = 0 in inequality (18), we get

|f ′
(z)| ≤ n

2
|z|n−1 max

z∈δD
|f(z)| for z ∈ C \ D.

Choosing a = −1
z

in (18), we get

|f(z)| ≤ 1

2
(|z|n + 1) max

z∈δD
|f(z)| for z ∈ C \ D.

Taking in particular z = Reiθ, 0 ≤ θ < 2π, so that |z| = R ≥ 1, we get for z ∈ δD

|f(Rz)| ≤ Rn + 1

2
max
z∈δD
|f(z)|.

As a refinement of Theorem 2.7, we next prove the following result which is a
compact generalization of inequalities (6) and (7).

Theorem 2.9. If f ∈ Pn such that f(z) 6= 0 for z ∈ D. Then for z ∈ C \ D

(20) |S̃a[f ](z)| ≤ 1

2
{|S̃a[zn]|+ n|a|}max

z∈δD
|f(z)| − {|S̃a[zn]| − n|a|}min

z∈δD
|f(z)|.

Equivalently
(21)

|(1+az)f
′
(z)−naf(z)| ≤ 1

2
{n|z|n−1 +n|a|}max

z∈δD
|f(z)|− 1

2
{n|z|n−1−n|a|}min

z∈δD
|f(z)|.

The result is best possible and equality holds for the polynomials having all zeros on
unit disk.
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Proof. If f(z) has a zero on δD, then m = 0 and the result follows from Theorem
2.7. We suppose that all the zeros of f(z) lie in C \ D, so that m > 0 and

m ≤ |f(z)| for z ∈ δD.
Therefore for every complex number β with |β| < 1, we have |f(z)| > m|β|. Hence by
Rouche’s theorem all zeros of F (z) = f(z)−mβ lie in C \D. We note that F (z) has
no zeros on δD, because if for some z = z0, with z0 ∈ δD is a zero of F (z), then

F (z0) = f(z0)−mβ = 0.

This gives |f(z0)| = m|β| < m, a contradiction.

Now if G(z) = znF

(
1
z

)
= znf

(
1
z

)
− βmzn = g(z) − βmzn, then all zeros of G(z)

lie in D and |G(z)| = |F (z)| for z ∈ δD. Therefore for every γ with |γ| > 1, the
polynomial F (z)− γG(z) has all its zeros in D. This gives by Lemma 2.1 all zeros of

S̃a[F (z)− γG(z)] and hence S̃a[F ](z)− γS̃a[G](z) lie in D.
From this as before we conclude

|S̃a[F ](z)| ≤ |S̃a[G](z)| for z ∈ C \ D.

Substituting for F (z) and G(z) and making use of the fact that S̃a is linear and

S̃a[1] = −na, we get

|S̃a[f ](z)−mβ(−na)| ≤ |S̃a[g](z)− βmS̃a[zn]| for z ∈ C \ D.
Choosing argument of β on right hand side suitably which is possible by Lemma 2.3
and making |β| → 1, we get

|S̃a[f ](z)| − n|a|m ≤ |S̃a[g](z)| −m|S̃a[zn]| for z ∈ C \ D.
This gives

(22) |S̃a[f ](z)| ≤ |S̃a[g](z)| − {S̃a[zn]| − n|a|}m for z ∈ C \ D.
Inequality (22) along with Lemma 2.4, yields for z ∈ C \ D

2|S̃a[f ](z)| ≤ |S̃a[f ](z)|+ |S̃a[g](z)| − {|S̃a[zn]| − n|a|}m
≤ {|S̃a[zn]|+ n|a|}max

z∈δD
|f(z)| − {|S̃a[zn]| − n|a|}min

z∈δD
|f(z)|.

This proves Theorem 2.9 completely.

Remark 2.10. Taking a = 0 in inequality (21), we get inequality (6) and if we
take a = −1

z
in (21), we get inequality (7).

Definition 2.11. A polynomial f ∈ Pn is said to be a self-inversive polynomial,

if f(z) ≡ ug(z), where u ∈ δD, and g(z) = znf(1
z
).

Theorem 2.12. If f(z) is a self-inversive polynomial of degree n, then for z ∈ C\D

(23) |S̃a[f ](z)| ≤ 1

2
{|S̃a[zn]|+ n|a|}max

z∈δD
|f(z)|.

Equivalently

(24) |(1 + az)f
′
(z)− naf(z)| ≤ 1

2
{n|z|n−1 + n|a|}max

z∈δD
|f(z)|.

The result is sharp and equality holds for the polynomial f(z) = zn + 1.
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Proof. Since f(z) is a self-inversive polynomial. Therefore, we have

f(z) = g(z) = znf

(
1

z

)
.

Equivalently

S̃a[f ](z) = S̃a[g](z).

Therefore by Lemma 2.4, we have

2|S̃a[f ](z)| = |S̃a[f ](z)|+ |S̃a[g](z)|
≤ {|S̃a[zn]|+ n|a|}max

z∈δD
|f(z)|,

from which the desired result follows.

Remark 2.13. If we choose a = 0 in inequality (24), we get

|f ′
(z)| ≤ n

2
|z|n−1 max

z∈δD
|f(z)| for z ∈ C \ D.

Next choosing a = −1
z

in (24), we obtain the following

Corollary 2.14. If f ∈ Pn is a self-inversive polynomial, then for z ∈ C \ D

|f(z)| ≤ |z|
n + 1

2
max
z∈δD
|f(z)|.

The result is best possible and equality holds for polynomial f(z) = zn + 1.
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