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C-FUCHSIAN SUBGROUPS OF SOME NON-ARITHMETIC

LATTICES

Li-Jie Sun

Abstract. We give a general procedure to analyze the structure for certain C-
Fuchsian subgroups of some non-arithmetic lattices. We also show their presenta-
tions and describe their fundamental domains which lie in a complex geodesic, a set
homeomorphic to the unit disk.

1. Introduction

Suppose that H is a Hermitian form of signature (2, 1) on C3. Then the projective
unitary Lie group PU(2, 1) of H contains two conjugacy classes of connected Lie
subgroups, each of which is locally isomorphic to PSL(2,R). The subgroups in one
class are conjugate to PSU(1, 1), and preserve a complex line for the projective action
of PU(2, 1) on the projective plane P2

C. The subgroups in the other class are conjugate
to PO(2, 1), and preserve a totally real Lagrangian plane. If Γ is a discrete subgroup
of PU(2, 1), the intersections of Γ with the connected Lie subgroups locally isomorphic
to PSL(2,R) are its Fuchsian subgroups. The Fuchsian subgroups fixing a complex
line are called C-Fuchsian subgroups. See Section 2 for more details.

Fuchsian subgroups have remarkable geometrical properties and they are interesting
on their own, see for instance [11, 12]. They also play an important role in complex
hyperbolic space. Deraux [2] proved that the discrete deformation of some R-Fuchsian
triangle group in PU(2, 1) is a cocompact arithmetic lattice (a lattice in PU(2, 1) is a
discrete group with finite covolume). There also have been significant developments
on C-Fuchsian subgroups. To this direction, let S be a hyperbolic surface. Gusevskii-
Parker [7] studied the deformation space of a C-Fuchsian representation π1(S) →
Isom(H2

C) by formulating and proving Poincaré’s polyhedron theorem for one special
class of polyhedra in complex hyperbolic plane. Furthermore, Stover [14] proved that
if Γ is a complex hyperbolic lattice containing a complex reflection, then Γ contains a
C-Fuchsian subgroup stabilising the complex geodesic fixed by the reflection. However,
it is usually difficult to get an explicit description of such C-Fuchsian subgroups from
the complex hyperbolic lattice. In the present paper, we wish to identify the structures
of the C-Fuchsian subgroups (arising as stabilisers of the complex geodesics fixed by
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reflections) in complex hyperbolic lattices, mainly by applying Poincaré’s polygon
theorem. In this way, we also illustrate their actions on the fixing complex geodesic
L. In other words, we get a more explicit version of Stover’s result. The study on
the structure of the stabilisers of the complex lines is useful in the study of complex
hyperbolic lattices using algebraic geometry (see for example [3]), and is useful for
considering lattices from the point of view of hybrids (see [16]).

In [4,5], Deraux, Parker and Paupert considered a family of groups which produce
all currently known examples of non-arithmetic lattices in PU(2, 1). Each of such
groups is a complex hyperbolic triangle group generated by three complex reflections
of the same order p (p ≥ 2). They prove the discreteness by constructing an explicit
fundamental domain for each group, and show that the geometric realisation gives an
embedding of the combinatorial fundamental domain into the topological closure of

complex hyperbolic plane H2
C. In particular, the authors listed the side (codimension-

1) representatives of the fundamental domains for the sporadic triangle groups (see
Section 3.1) and Thompson triangle groups (see Section 3.2), also gave the natural
representation for each group.

In this paper, our goal is to identify the C-Fuchsian subgroups of the sporadic
triangle groups (subgroups of equilateral triangle groups) and Thompson triangle
groups (subgroups of non-equilateral triangle groups), which appeared in [5]. We con-
sider the equilateral triangle groups which are generated by three complex reflections
R1, R2, R3 with the property that there exists a complex hyperbolic isometry J of
order 3 such that Rj+1 = JRjJ

−1 (the indices taken by mod 3). The equilateral tri-
angle groups then can be parameterised by the order p of generators and the complex
parameter

τ = tr(R1J).

We denote the sporadic triangle groups by S(p, τ). See details in Section 3.1.
Our main theorem is the following:

Theorem 1.1. Let R1, R2, R3 be three complex reflections of order p in SU(2, 1)
so that Ri fixes a complex geodesic Li, i = 1, 2, 3. Suppose that R1, R2, R3 is the
generating set for S(p, τ). Then there exist C-Fuchsian subgroups fixing complex
geodesic L1 which have the following structure according to (τ, p) :

(i) τ = −1 + i
√

2, p = 3, 4, 6 :〈
(13̄23)2, (13)3, (12)3, (1232̄)2, (12323̄2̄)3(1232̄)2(12)3

〉
;

(ii) τ = −1+i
√

7
2

, p = 3, 4, 5, 6, 8, 12 :〈
(12)2, (13)2, 232̄P 2

〉
,

where P = R1J ;

(iii) τ = 1+
√

5
2
, p = 3, 4, 5, 10 :〈

13̄2̄323, 13121̄3̄, (13̄23)313̄2̄323
〉
.

Here we just write 13̄23 to denote R1R
−1
3 R2R3 (see Section 2.3), etc. Throughout

this paper, we always investigate the C-Fuchsian subgroups fixing a complex geodesic
L1. One should note that there naturally exist C-Fuchsian subgroups fixing other
complex geodesics in the complex hyperbolic lattice under consideration. For example,
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we could get a C-Fuchsian subgroup in S(3,−1+i
√

2) stabilising the complex geodesic
L2 fixed by the complex reflection R2 which is identified with JR1J

−1:〈
J(13̄23)2J−1, J(13)3J−1, J(12)3J−1, J(1232̄)2J−1, J(12323̄2̄)3(1232̄)2(12)3J−1

〉
.

In [5], the authors build blocks of the fundamental domains bounded by spherical
shells that surround the fixed point of P = R1J for the lattices of equilateral triangle
groups type or Q = R1R2R3 in the non-equilateral case. A spherical shell here means
that the corresponding cell complex is an embedded copy of S3, which bounds a well-
defined 4-ball. Surrounding a point just means that the point is in the ball component
of the complement of that copy of S3. The basic building blocks for their fundamental
domains are pyramids (for example, see Figure 1) in bisectors. They finally list
side (codimension-1) representatives for each P -orbit of sides (or Q-orbit in the non-
equilateral case), and one side for each pair of opposite sides which means paired in the
sense of the Poincaré polyhedron theorem, see Appendix in [5]. In the present paper,
our general procedure to distinguish C-Fuchsian subgroups is as follows: We firstly
focus on the pyramids of the side representatives of the fundamental domain for the
non-arithmetic lattices; secondly, for each lattice, we force the side representatives
to have the same base L1 and obtain a polygon lying in the complex geodesic L1;
finally we prove that the polygon is a fundamental domain of some subgroup of the
lattice. Actually the polygon can be matched by side pairing transformations, which
are exactly the generators of the C-Fuchsian subgroups as showed in Theorem 1.1.
We also give the natural presentation for each C-Fuchsian subgroup among the proof.

The paper is arranged as follows. Section 2 contains background material about
complex hyperbolic plane H2

C, totally geodesic subspaces and complex reflection. In
Section 3 we recall the normalisation of two kinds of complex hyperbolic triangle
groups in PU(2, 1): equilateral triangle groups and non-equilateral triangle groups,
in which we will clarify the C-Fuchsian subgroups. In Section 4, we mainly state
and prove our theorems, including describing the fundamental domains of certain
C−Fuchsian subgroups.

2. Preliminaries

The material for this section is standard. The reader may refer to [6] for more
details.

2.1. Complex hyperbolic plane. We use C2,1 to denote C3 equipped with a Her-
mitian form of signature (2, 1). If we assume that P is the canonical projectivisation
from C2,1 to P2

C and suppose that the Hermitian form of signature (2, 1) to be H, then
the complex hyperbolic plane H2

C can be defined as follows:

H2
C := P{z ∈ C2,1 : 〈z, z〉 = z̄tHz < 0}.

Correspondingly, the boundary ∂H2
C of complex hyperbolic plane is

∂H2
C := P{z ∈ C3 : 〈z, z〉 = z̄tHz = 0}.

There exists a natural action of the unitary group U(2, 1) of the Hermitian from on
H2

C. The automorphism group of H2
C is then PU(2, 1), the projectivisation of U(2, 1).

In particular, SU(2, 1) is the subgroup of U(2, 1) with the determinant of each element
being 1, which is the three fold cover of the projection group PU(2, 1).
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Let z and w be points in H2
C corresponding to vectors z,w ∈ C2,1. Then the

Bergman metric ρ on H2
C is given by the following distance formula:

cosh2

(
ρ(z, w)

2

)
=
〈z,w〉〈w, z〉
〈z, z〉〈w,w〉

.

If we choose the Hermitian form of signature (2, 1) as follows

〈z,w〉 = z1w1 + z2w2 − z3w3,

with z = [z1, z2, z3]t, w = [w1, w2, w3]t, then the complex hyperbolic plane H2
C can

be described in the affine chart z3 6= 0 as the unit ball in C2 endowed with the
unique Kähler metric invariant under all biholomorphisms of the ball. The metric is
symmetric and has non-constant negative real sectional curvature but pinched between
−1 and −1/4. We normalise its holomorphic sectional curvature to be −1.

An automorphisms of H2
C is said to be elliptic if it fixes at least one point of H2

C,
parabolic if it fixes exactly one point of ∂H2

C, loxodromic if it fixes exactly two points
of ∂H2

C. Throughout this paper, we freely use the classification of automorphisms of
H2

C into regular elliptic, complex reflection, ellipto-parabolic, unipotent parabolic and
loxodromic, e.g., an automorphism is regular elliptic if and only if it has a fixed point
in H2

C and has distinct eigenvalues. We refer to Section 6.2 of [6] for the details.

2.2. Totally geodesic subspaces. Given two points z and w in H2
C := H2

C ∪ ∂H2
C,

with lifts z,w to C2,1 respectively, the complex span of z and w projects to a complex
projective line in P2

C. The intersection of a complex projective line with H2
C is called

a complex geodesic L (homeomorphic to an open 2-dimensional disk), which can be
simply obtained by taking the intersection of orthogonal complement of a positive
vector n with H2

C, i.e.,

L = P{z ∈ C2,1 : 〈z,n〉 = 0} ∩H2
C.

We refer to n as a polar vector to L.
A maximal totally geodesic subspace in H2

C can only be one of the following:

(i) A complex geodesic, which is an isometrically embedded copy of H1
C. It has the

Poincaré model of hyperbolic geometry with constant curvature −1;
(ii) A totally real Lagrangian plane, which is an isometrically embedded copy of H2

R.
It has the Beltrami-Klein projective model with constant curvature −1/4.

2.3. Complex reflection. Suppose that the polar vector of a complex geodesic L1

is n1. We consider the complex reflection R1 in the complex geodesic L1 which is
of order p, i.e., complex reflection R1 in U(2, 1) maps n1 to eiφn1, where φ = 2π/p.
Throughout this paper, we assume that p ∈ Z and p ≥ 2. We take one lift of R1 to a
matrix in SU(2, 1) and write the map here with the same symbol:

(2.1) R1(z) = e−
iφ
3 z + (e

2iφ
3 − e−

iφ
3 )
〈z,n1〉
〈n1,n1〉

n1.

In what follows, if g is a complex reflection and a complex geodesic L is pointwise fixed
by g, we will always say that L is the mirror of g. A basic fact is that any complex
reflection is an element of PU(2, 1). We will restrict to the complex hyperbolic triangle
groups generated by three complex reflections with the same order p (p ≥ 2). In order
to avoid tedious notation, we denote the three generators R1, R2, R3 of complex
hyperbolic triangle groups simply by 1, 2, 3. Unless otherwise stated, in what follows
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we also denote their inverse by 1̄, 2̄, 3̄. In this way, we just write 13̄23 to denote
R1R

−1
3 R2R3, etc.

We recall the definition for braid relation between group elements (see Section 2.2
of [8]). Let G be a group and a, b ∈ G. Then we will say that a, b satisfy a braid
relation of length n ∈ Z+ if

(ab)n/2 = (ba)n/2,

where powers mean that the corresponding alternating product of a and b should have
n factors. We denote the braid length n of a, b by brn(a, b). For example, br3(a, b)
means that aba = bab.

Let A and B be two complex reflections in distinct complex geodesics LA and
LB respectively, which correspond to polar vectors nA and nB. The cross-product
z := nA � nB is defined as

z = (nA
tH)× (nB

tH).

Then three possibilities arise (see Section 3.3.2 in Goldman [6]):

1. z is negative, namely 〈z, z〉 < 0. In this case LA and LB intersect in P(z) ∈ H2
C

corresponding to the negative vector z;
2. z is null, namely 〈z, z〉 = 0. In this case LA and LB are asymptotic at the point

P(z) ∈ ∂H2
C;

3. z is positive, namely 〈z, z〉 > 0. In this case LA and LB are ultraparallel, that
is they are disjoint and have a common orthogonal complex geodesic, which is
polar to z.

3. Sporadic triangle groups and Thompson triangle groups

In this section we review sporadic triangle groups (Section 3.1) and Thompson
triangle groups (Section 3.2), which we will mainly study in Section 4. For these two
kinds of complex hyperbolic triangle groups, we refer for instance to [5,10,15] for the
details.

3.1. Equilateral triangle groups. Recall from the introduction that an equilateral
triangle group can be generated by a complex reflections R1 and a complex hyperbolic
isometry J of order 3. Let

R2 = JR1J
−1, R3 = JR2J

−1

The equilateral triangle groups then can be parameterised by the order p of generators
and the complex parameter

τ = tr(R1J).

It is difficult to give the conditions of p with τ so that the equilateral triangle group is
a lattice, or at least discrete. However, the pairwise product of generators should be
non-loxodromic (see [13]). This shows that there are two continuous families satisfying
that R1J and R1R2 are elliptic

τ = −eiψ/3, τ = eiψ/6 · 2 cos(ψ/2),

where ψ are rational multiples of π. These two families correspond to Mostow groups
or certain subgroups of Mostow groups. For such groups, the list of lattices can
be obtained from the work of Deligne-Mostow (see [9, 10]). There are still lattice
candidates not lying on these two families. In [5] the authors show that the equilateral
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triangle groups for some values of τ = tr(R1J) indeed contain lattices, of which the
explicit values of τ and p are in Table 1. They are called sporadic triangle groups .
We denote the corresponding group by S(p, τ).

Note that the list here is given up to complex conjugation and multiplication by a
cube root of unity. In Section 4, we will give the analysis on C-Fuchsian subgroups of
complex hyperbolic lattices S(p, τ) for τ = τ1, τ2, τ4.

τ p

τ1 = −1 + i
√

2 3, 4, 6

τ2 = −(1 + i
√

7)/2 3, 4, 5, 6, 8, 12

τ3 = e−πi/9(−e−2πi/3 − (1−
√

5)/2) 2, 3, 4

τ4 = (1 +
√

5)/2 3, 4, 5, 10

Table 1. Values of p, τ such that S(p, τ) are lattices.

3.2. Non-equilateral triangle groups. In this section, we review notation for the
non-equilateral triangle groups which come from Thompson’s thesis [15]. They can
be parameterised by a triple of complex numbers ρ, σ, τ . The three numbers will be
all equal to τ as above in the case of equilateral triangle. In the same fashion, we
assume that the generators are of order p, u = e2πi/3p and the Hermitian form is

H =

α β1 β̄3

β̄1 α β2

β3 β̄2 α

 ,

where α = 2− u3 − ū3, β1 = (ū2 − u)ρ, β2 = (ū2 − u)σ, β3 = (ū2 − u)τ and

ρ = (u2 − ū)
〈n2,n1〉
‖n2‖‖n1‖

, σ = (u2 − ū)
〈n3,n2〉
‖n3‖‖n2‖

, τ = (u2 − ū)
〈n1,n3〉
‖n1‖‖n3‖

.

The generators which preserve the above Hermitian form H are given by
(3.2)

R1 =

u2 ρ −uτ̄
0 ū 0
0 0 ū

 , R2 =

 ū 0 0
−uρ̄ u2 σ

0 0 ū

 , R3 =

ū 0 0
0 ū 0
τ −uσ̄ u2

 .

The elements R1, R2, R3 are determined up to conjugacy by |ρ|, |σ|, |τ | and arg(ρστ),
see [4, 10]. Suppose that the order of 23, 31, 12 and 13̄23 are a, b, c, d respectively.

a b c d o(123) ρ σ τ lattices for p

S2 3 3 4 5 5 1 + 1+
√

5
2
e2πi/3 1 1 3, 4, 5

E2 3 4 4 4 6
√

2 e−2πi/3
√

2 3, 4, 6, 12

H1 3 3 4 7 42 −1+i
√

7
2

e−4πi/7 e−4πi/7 2,−7
H2 3 3 5 5 15 −1− e−2πi/5 e4πi/5 e4πi/5 2, 3, 5, 10,−5

Table 2. Lists of parameters of some lattices in Thompson triangle
groups. The negative values of p correspond to the conjugate values of
parameters of Thompson triangle groups.
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We write (a, b, c; d) for the groups generated by complex reflections in a triangle with
angles π/a, π/b, π/c satisfying that the order of 13̄23 is d. Note that here a, b, c ≥ 3
because the (2, b, c) triangle groups are rigid in PU(2, 1). In Table 2, we list only some
values of ρ, σ, τ which correspond to lattices. For the construction of the fundamental
domain of these lattices, we refer to [5] for further details. We give the explicit struc-
tures of the C-Fuchsian subgroups stabilising the complex geodesic L1 in Thompson
triangle groups S2 and E2 after Remark 4.4.

It is plausible to consider that one could also identify the C-Fuchsian subgroups for
S(p, τ3) (p = 2, 3, 4), H1, H2; however, it has not been achieved by our present method.
The main difficulty is to find an appropriate polygon and the transformations which
pair the sides of the polygons lying the complex geodesics under consideration.

4. C-Fuchsian subgroups and their explicit Fundamental domains

Let us firstly recall the Poincaré polygon theorem in hyperbolic plane (see [1]),
which is the tool for us to elaborate the structure of certain C-Fuchsian subgroups in
complex hyperbolic triangle lattices, then give the proof of Theorem 1.1.

Theorem 4.1. Let D be a polygon in the hyperbolic plane satisfying the following
conditions and denote D ∪ ∂D by D̄.
(i) For each side s of D, there is a side s′ and an element gs (of the isometries of the
hyperbolic plane) such that gs(s) = s′, we call each gs the side pairing transformation.
(ii) gs′ = g−1

s . Observe that if there is a side s, with s′ = s, then it implies that g2
s = Id.

If this occurs, the relation g2
s = Id is called a reflection relation. Now let G be the

group generated by the g′ss.
(iii) gs(D) ∩D = ∅.
(iv) For each vertex x of D, there are vertices x0(= x), x1, · · · , xn of D and elements
f0(= Id), f1, · · · , fn of G such that the sets fj(Nj) (Nj = {y ∈ D̄ : d(y, xj) < ε}) are
non-overlapping sets whose union is B(x, ε) (the ball centered at x with radius ε) and
such that each fj+1 is of the form fjgs for some s (j = 1, · · · , n; fn+1 = Id).
(v) The ε in the above condition can be chosen independently of x in D̄.
Then the group G generated by the side pairing transformations is discrete, and D is
a fundamental polygon for G.

Before we give the proof of Theorem 1.1, we state two propositions for giving the
whole presentation of the Fuchsian groups below.

Proposition 4.2. Suppose that a hyperbolic triangle have sides a, b and c and
opposite angles α, β, and γ. Then the following formula holds

(4.3) cosh c = cosh a cosh b− sinh a sinh b cos γ.

For the details, see Section 7.12 in [1].

Proposition 4.3 (Propostion 2.5 of [5]). Suppose that A and B are complex
reflections of order p (p ≥ 2). If br(A,B) = q for some integer q > 1, then:

(1) if q is odd, then the center of 〈A,B〉 is (AB)q which is a complex reflection with

rotation angle |(q−2)p−2q|
p

π;

(2) if q is even, then the center of 〈A,B〉 is (AB)q/2 which is a complex reflection

with rotation angle |(q−2)p−2q|
2p

π.
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In particular, the mirror of (AB)q (respectively (AB)q/2) is a complex geodesic or-
thogonal to the mirror of A, and so no power of AB equals A.

On the other hand, suppose that A and B are complex reflections of order p (p ≥ 2)
and br(A,B) = 1. If there exist integers 1 ≤ m < ord(A) and 2 ≤ n < ord(B) for
which Bn = A±m, then Bn commutes with all elements stabilising the mirror LA
of A. In fact, for any element g which fixes the complex geodesic LA, the action of
A±mgA∓m on LA is the same with g. Therefore, one can get that BngB−n = g which
yields to Bng = gBn.

Proof of Theorem 1.1. Suppose that ni is the polar vector of Ri (i = 1, 2, 3) and
u = eiφ/3 = e2ip/3. By the trace formula of tr(R1J) in [9], we may write τ as

τ = tr(R1J) = (u2 − ū)
〈nj+1,nj〉
‖nj+1‖‖nj‖

.

We normalise ni so that 〈ni,ni〉 = 2 − u3 − ū3. Then one can get that 〈ni+1,ni〉 =
(ū2−u)τ. We now choose the polar vectors ni of the complex geodesics Ri (i = 1, 2, 3)
to be the normal basis of C3, i.e.,

(4.4) n1 =

1
0
0

 , n2 =

0
1
0

 , n3 =

0
0
1

 .
Therefore the corresponding matrix representation of complex hyperbolic isometry J
and the Hermitian form H are given respectively by

(4.5) J =

0 0 1
1 0 0
0 1 0

 , H =

α β β̄
β̄ α β
β β̄ α

 .

where α = 2− u3 − ū3, β = (ū2 − u)τ. Then the Hermitian form is of signature (2, 1)
if and only if

det(H) = α3 + 2Re(β3)− 3α|β|2 < 0.

All the lattices we will consider below satisfy the above inequality. We can get the
matrix representation of R1 in SU(2, 1) by the formula (2.1)

(4.6) R1 =

u2 τ −uτ̄
0 ū 0
0 0 ū

 .

Correspondingly, one can get the matrix forms of R2, R3 by the relations

R2 = JR1J
−1, R3 = JR2J

−1.

Let vi (i = 1, 2, 3) denotes a lift of the three vertices of the triangle, i.e., vi =
ni+1 � ni+2. A direct computation yields

v1 =

 α2 − |β|2
β2 − αβ̄
−αβ + β̄2

 , v2 =

−αβ + β̄2

α2 − |β|2
β2 − αβ̄

 , v3 =

 β2 − αβ̄
−αβ + β̄2

α2 − |β|2

 .
In what follows, we investigate the subgroups (which fix complex geodesic L1) of

triangle lattices S(p, τ) (see Table 1) for τ1, τ2, τ4. We refer to Appendix in [5] for
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the details of the explicit presentations of triangle lattices S(p, τ) and the combina-
torial invariant shells. We wish to emphasize that the invariant shells are the side
representatives of the fundamental domains for the complex hyperbolic lattices.

(i) τ = −1 + i
√

2.
The triangle lattice Γ is generated by R1, R2, R3, J , explicitly

(4.7)

〈R1, R2, R3, J :Rp1, J
3, (R1J)8, R3 = JR2J

−1 = J−1R1J, (R1R2)
| 3p
p−3 |, br3(R1, R2R3R2R

−1
3 R−1

2 ),

br6(R1, R2), br4(R1, R2R3R
−1
2 ), (R1R2R3R

−1
2 )
| 4p
p−4
|
, br3(R1, R

−1
3 R−1

2 R3R2R3)〉

Throughout the paper, relations involving infinite exponents shall be removed from
the presentation. In the form of a list of side representatives of Γ’s fundamental
domain, the rough structure of the invariant shells is given by

(4.8) [6] 1; 2, 3; [4] 2; 1, 232̄; [3] 232̄; 1, 2323̄2̄; [3] 2323̄2̄; 1, 3̄2̄323,

where [k] a; b, c denotes a k-gon pyramid with base La (which is fixed by element a).

In Figure 1, we give a rough picture of [6] 1; 2, 3, where each vertex zi is the inter-
section point of the lateral edge with the base edge L1, therefore usually the formula
of the vertices can be written in this form: z1 = n1 �n2, z2 = n1 �R2(n3) and so on.
However, one should note that the form of each vertex of such a pyramid depends on
p; for example, the vertex z2 (the intersection point of R2(L3) with L1) will be slightly
changed when p = 6. One can check that n1 � R2(n3) is a positive vector which is
also a polar vector of the common perpendicular complex geodesic L1232̄ to L1 and
R2(L3). Actually, the point z2 will be n1 � (n1 � 2(n3)).

Figure 1. Pyramid corresponding to [6] 1; 2, 3 with the base L1 fixed
by the complex reflection R1. Note that 3̄2̄3̄2323 = 2323̄2̄ is a conse-
quence of the braid relation br6(R1, R2).

We take elements of the triangle lattice such that each of the four shells in (4.8) to a
pyramid with the same base L1. We leave [6] 1; 2, 3 invariant and do minor surgeries to
the other three pyramids such that each of them has base L1. Firstly, we consider the
action of the element J−1 on the pyramid [4] 2; 1, 232̄ with base L2. Then one can get
a new pyramid with base J−1(L2) fixed by J−12J . The new pyramid is identified with
[4] J−12J ; J−11J, J−1232̄J which can be written as [4] 1; 3, 121̄ due to Rj+1 = JRjJ

−1.
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Similarly, we deform the other two pyramids in (4.8) to be with the same base L1 :

[4] 2; 1, 232̄
J−1

−→ [4] 1; 3, 121̄

[3] 232̄; 1, 2323̄2̄
J−→ [3] 313̄; 2, 3131̄3̄

3̄−→ [3] 1; 3̄23, 131̄

[3] 2323̄2̄; 1, 3̄2̄323
J−1

−→ [3] 1212̄1̄; 3, 2̄1̄212
2̄1̄−→ [3] 1; 2̄1̄312, 121̄.

Along the same base L1, we paste the four pyramids

(4.9) [6] 1; 2, 3; [4] 1; 3, 121̄; [3] 1; 3̄23, 131̄; [3] 1; 2̄1̄312, 121̄,

and mainly focus on the obtained decagon which lies in the closure of complex geodesic

L1 (homeomorphic to H1
C). Its vertices are the intersection points of complex geodesic

L1 with other complex geodesics. Generally, the decagon F (see Figure 2) has vertices
xj = P(n1 � aj) (j = 0, 1, · · · , 9) where

Figure 2. The decagon F

a0 = 3̄2̄n3, a1 = 3̄n2, a2 = 3̄231n3, a3 = n3, a4 = 31n2,

a5 = 2̄1̄n3, a6 = 2̄1̄3121n2, a7 = n2, a8 = 2n3, a9 = 23n2.

Here x0 just denotes the intersection point of L1 with R−1
3 R−1

2 (L3) (the point fixed by
the complex reflection 3̄2̄323), i.e., x0 is the fixed point of 13̄2̄323. Just as we stated
previously, one should note that the formulas of the vertices above depend on p. For
example, the formula for the point x7 (the intersection point of L1 with L2) will be
P(n1 � (n1 � n2)) when p = 4, which lies in the complex geodesic L1 and is fixed by
12.

From the combinatorics of the four pyramids (4.9), we know that the decagon
composes of a hexagon P1 with vertices x0, x1, x3, x7, x8, x9, a quadrilateral P2 with
vertices x3, x4, x5, x7, a triangle P3 with vertices x1, x2, x3 and a triangle P4 with
vertices x5, x6, x7, i.e., it comprises ten sides l1, l2, · · · l10, where

(4.10) li = P(SpanC{xi−1, xi}) ∩ L1.



C-Fuchsian subgroups of some non-arithmetic lattices 325

In order to find the explicit structure of the Fuchsian group stabilising L1, we
start from the side pairing transformations for the decagon. One can separately
consider the transformations which convert vertices from the construction of above
four polygons. Note that the element 3̄23 transfers the complex geodesic L3̄2̄323 fixed
by 3̄2̄323 to the complex geodesic L3 fixed by R3 when focusing on the hexagon P1.
Also, the element 3̄23 transfers the complex geodesic L3 to the complex geodesic
L3̄23131̄3̄2̄3 when focusing on the triangle P3. Then we consider the element (13̄23)2

which fixes the vertex x1 and obtain that (13̄23)2(l1) = l2. In the same manner, one
can get that (13)3 fixes x3 and maps l3 to l4; (12)3 fixes x7 and maps l7 to l8. Now,
let g1 = (13̄23)2, g2 = (13)3, g3 = (12)3. One can know that

g1(l1) = l2, g2(l3) = l4, g3(l7) = l8.

The difficulty here is pairing the remaining four sides l5, l6, l9, l10. We have that
(12)3(x6) = x8, and pay attention to the stabiliser 1232̄ of x8. Denote (1232̄)2(12)3 by
g4, one can immediately get that g4(x6) = x8. We claim that g4(x5) = x9. Note that
(123)3 = 1J, because the order of 1J is 8 and (1J)3 = 123. Using br6(1, 2), we have

1̄2(1232̄)2(12)3(a5)

=1̄2(1232̄)2(212121)1̄(2̄1̄ n3)

=1̄232̄123123 n3

=1̄232̄3̄2̄J n3

=1̄232̄3̄2̄ n1.

Due to br3(1, 2323̄2̄), we see at once that 1̄232̄3̄2̄12323̄2̄1 = 2323̄2̄, which means
1̄232̄3̄2̄ n1 = 23 n2 = a9. Therefore, we obtain that g4(l6) = l9.

Let g5 = (12323̄2̄)3 ◦ g4 = (12323̄2̄)3(1232̄)2(12)3. It follows immediately that
g5(x5) = x9, because g4(x5) = x9 and 12323̄2̄ fixes x9. We claim that g5(x4) = x0

by checking 1̄3g5(1̄a4) = 1a0. Considering the braid relations in the group presenta-
tion (4.7), we have

1̄3(12323̄2̄)3(1232̄)2(12)3(1̄a4)

=1̄3(12323̄2̄)3(232̄1)2(21)3(1̄31n2)

=1̄2323̄2̄1(123)22̄(12)3(31n2)

=1̄2323̄2̄1(3̄2̄J)2̄(21)3(31n2)

=1̄2323̄2̄13̄2̄J1212131n2

=1̄(2323̄2̄12323̄2̄)2312Jn2

=2323̄2̄(123)2n3

=2323̄2̄3̄2̄Jn3

=3̄2̄3̄(23)3(3̄2̄)2n1

=3̄2̄3̄23n1.

It is easy to know that 3̄2̄3̄23n1 = 13̄2̄n3 = 1a0, because of (3̄2̄3̄23)1(3̄2̄323) = 13̄2̄3231̄
from br3(1, 3̄2̄323). Therefore g5(x4) = x0, i.e., g5(l5) = l10.

We consider the C-Fuchsian subgroup Γ0 generated by g1, g2, g3, g4, g5, and only
need to check the local tiling condition near every vertex of the decagon F in Figure
2 to show that it is indeed the fundamental domain of the C-Fuchsian subgroup Γ0.
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It is sufficient to consider the three cycles: {x0, x2, x4}, {x5, x9}, {x6, x8}. We would
like to take the vertex x8 when p = 3 for example. It is easily seen that the order of
the stabiliser g3 ◦ g−1

4 in Γ0 of the vertex x8 is 6 by using Proposition 4.3. Because
the invariant shells (4.8) are the side representatives of the fundamental domain of
the complex hyperbolic lattice Γ, the domains (g3 ◦ g−1

4 )m(F ) do not intersect with
each other for m = 1, 2, 3, 4, 5. Let θ1, θ2 be the internal angles of x6, x8 respectively.
Using the Cosine Rule (4.3) for the triangle with vertices g3(x5), x8, x7 lying in the
complex geodesic L1 (an embedded copy of H1

C), one can get that θ1 + θ2 is exactly
2π/6. We conclude, therefore, that the local tiling condition is satisfied for the vertex
x8 when p = 3. In the same way, one can check the local tiling condition of all
vertices for p = 3, 4, 6 by considering the relation of the sum of angles at all elliptic
vertices belonging to an elliptic cycle with the order of that cycle. In particular, by
computing the the angle of the elliptic cycle, we could get the orders of the three cycle
transformations at x0, x5, x8 respectively. Finally we obtain that the decagon F is
the fundamental domain of the C-Fuchsian subgroup Γ0 by Theorem 4.1.

From the presentation (4.7) of the triangle lattice. We see at once that both g2

and g3 is of order | p
p−3
|. Recalling the element P 2 = 1J1J, we have

P 21P−2 = 1J1J1J−11̄J−11̄ = 1(232̄)1̄,

P 2(3̄23)P−2 = 1J1J 3̄23J−11̄J−11̄ = 1,

which yields that the order of g1 = (13̄23)2 is | 2p
p−4
|. One can obtain the normal

representations of the C-Fuchsian subgroup Γ0 for p = 3, 4, 6 :

• p = 3, 4,

〈g1, g2, g3, g4, g5 : g
| 2p
p−4
|

1 , g
| p
p−3
|

2 , g
| p
p−3
|

3 , (g5 ◦ g2 ◦ g1)|
2p
p−2
|, (g5 ◦ g−1

4 )|
2p
p−6
|, (g4 ◦ g−1

3 )|
2p
p−4
|〉;

• p = 6,
〈g1, g2, g3, g4, g5 : g6

1, g
2
2, g

2
3, (g−1

4 ◦ g3)6〉.
where g5 ◦ g2 ◦ g1 and g5 ◦ g−1

4 are ellipto-parabolic element. In this case x0, x5

lie in the boundary of the disk.

(ii) τ = −1+i
√

7
2

.
The triangle lattice Γ is generated by R1, R2, R3, J , explicitly

(4.11)
〈R1, R2, R3, J :Rp

1, J
3, (R1J)7, R3 = JR2J

−1 = J−1R1J, (R1R2)|
4p
p−4
|,

br4(R1, R2), (R1R2R3R
−1
2 )|

6p
p−6
|, br3(R1, R2R3R

−1
2 )〉

The rough structure of the invariant shell is given by

[4] 1; 2, 3; [3] 2; 1, 232̄.

The element J−1 maps the shell [3] 2; 1, 232̄ to [3] 1; 3, 121̄. Pasting the two shells

(4.12) [4] 1; 2, 3; [3] 1; 3, 121̄

along the bases in L1, we get a pentagon (see Figure 3) with vertices xj = P(n1 � aj)
where

a1 = 2n3, a2 = 3̄n2, a3 = n3, a4 = 31n2, a5 = n2.

The pentagon composes of a tetragon P1 with vertices x1, x2, x3, x5 and a triangle P2

with vertices x3, x4, x5.
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Figure 3. The polygon F

We restrict to the singular point x0 fixed by 232̄P 2 (where P = R1J). A direct
computation yields that x0 lies in the geodesic spanned by x1, x2 and 232̄P 2 maps x1

to x2. Indeed, using (232̄121)2(1̄2̄1̄23̄2̄) = (23)2(3̄2̄), we have

232̄P 2(a1) = 232̄1J1J(2n3) = 232̄121n2 = 23n2 = 3̄n2 = a2.

Thence we consider a hexagon comprising the following sides

(4.13) li =

 P(SpanC{xi, x0}) ∩ L1, i = 1, 2.

P(SpanC{xi−1, xi}) ∩ L1, i = 3, 4, 5, 6.

By the composition of this hexagon, one could check that the second power of the
element 12 maps x4 to x1. Then we get that (12)2(l5) = l6 because of (12)2(x4) = x1

and (12)2(x5) = x5. Similarly, it is easy to check that (13)2(l3) = l4. Furthermore, it
follows from 232̄P 2(x0) = x0, 232̄P 2(x1) = x2 that 232̄P 2(l1) = l2. Now we have paired
the sides of the pentagon drawn above. For each vertex of the cycle {x1, x2, x4}, one
can verify that it satisfies local tiling condition by considering the sum of angle of all
vertices and the order of its stabiliser.

By Theorem 4.1, we obtain the fundamental domain in L1 (which is the hexagon
F in Figure 3) of the C-Fuchsian subgroup generated by g1, g2, g3, where

g1 = (12)2, g2 = 232̄P 2, g3 = (13)2.

We are now in a position to show the presentation of this C-Fuchsian subgroup for
all values of p. Because the order of 1J is 7, it follows from P = 1J and (1J)3 = 123
that P 2 = P−5 = P−23̄2̄1̄ = J−11̄J−11̄3̄2̄1̄. We have that

g2
2 = (232̄1J1J)(232̄J−11̄J−11̄3̄2̄1̄) = 232̄12121̄2̄1̄3̄2̄1̄ = 1̄,

which shows that the order of g2 is 2p and g1 commutes with g1 and g3 by recalling
the statement after Proposition 4.3. From the braid relation br4(1, 2), one can easily
see that br4(3, 1). Then we get that the order of g3 is | 2p

p−4
| because the elements 12,

23, and 31 have the same order | 4p
p−4
|. What is left is to consider the order of the

elliptic cycle. Note that P 2 = (1J)−12 = (123)−4 = (3̄2̄1̄)4. Using the relations in the
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presentation (4.11), we have

g1 ◦ g3 ◦ g2 =12(12)31̄2(13)2(232̄P 2)

=132121̄31(3232̄3̄2̄)1̄(3̄2̄1̄)3

=132121̄312̄(31̄3̄)2̄1̄(3̄11̄2̄1̄3̄2̄1̄)

=132(121̄312̄1̄3̄)(1̄312̄1̄3̄1)1̄2̄1̄3̄2̄1̄

=1323̄(121̄2̄1̄)3̄(121̄2̄1̄)3̄2̄1̄

=13(23̄2̄1̄)3,

which indicates the order of g1 ◦ g3 ◦ g2 is | 2p
p−6
|, since the order of 1232̄ is | 6p

p−6
| and

13(23̄2̄1̄)3 = (23̄2̄1̄)313. We get the following presentation of the C-Fuchsian subgroup

for τ = −1+i
√

7
2

:

〈g1, g2, g3 : g
| 2p
p−4
|

1 , g2p
2 , g

| 2p
p−4
|

3 , (g1 ◦ g3 ◦ g2)|
2p
p−6
|, [g1, g

2
2], [g3, g

2
2]〉.

(iii) τ = 1+
√

5
2
.

The triangle lattice Γ is generated by R1, R2, R3, J , explicitly

〈R1, R2, R3, J :Rp
1, J

3, (R1J)5, R3 = JR2J
−1 = J−1R1J, br5(R1, R2),

(R1R2)|
10p

3p−10
|, br3(R1, R2R3R

−1
2 ), (R1R2R3R

−1
2 )|

6p
p−6
|〉.

We consider the combinatorics of the fundamental domain for this triangle lattice
which comprises the following two invariant shells

[5] 1; 2, 3; [3] 2; 1, 232̄.

Following the process of the previous cases, we firstly map the pyramid [3] 2; 1, 232̄
to [3] 1; 3, 121̄ by the action of the element J−1. We paste the two pyramids

(4.14) [5] 1; 2, 3; [3] 1; 3, 121̄

along the bases in L1. Then we get a hexagon in Figure 4 with the vertices xj =
P(n1 � aj) (j = 0, 1, · · · 5), where

Figure 4. The hexagon F2
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a0 = 3̄2̄n3, a1 = 3̄n2, a2 = n3, a3 = 31n2, a4 = n2, a5 = 2n3.

The hexagon composes of a pentagon P1 with vertices x0, x1, x2, x4, x5 and a triangle
P2 with vertices x2, x3, x4. We write the sides of the hexagon F2 as follows

(4.15) li = P(SpanC{xi−1, xi}) ∩ L1, i = 1, 2, · · · , 6.
Let g1 = 13̄2̄323, g2 = 13121̄3̄. A trivial verification shows that

g1(l6) = l1, g2(l3) = l4,

since g1(x0) = x0, g1(x5) = x1, g2(x3) = x3, g2(x2) = x4. About the sides l5 and l2,
we firstly apply the element g1 to map l5 to a geodesic l, one of whose endpoint is
x1 because of g1(x5) = x1. Due to the construction of the fundamental domain for
the triangle lattice Γ and 13̄23 fixes x1, a direct calculation yields that (13̄23)3 · g1

maps x5, x4 to x2, x1 respectively. Therefore, we know that g3(l5) = l2, where g3 =
(13̄23)3 ◦ g1. One could finally check the local tiling condition for the vertices of the
two cycles: {x1, x5}, {x2, x4} which follows by the same method as in the first case
τ = −1 + i

√
2.

We claim that for any holomorphic isometry g fixing the complex geodesic L1, g
commutes with R1. Indeed, gR1g

−1 has the same action with R1 on L1, therefore,
gR1g

−1 = R1. i.e., gR1 = R1g. Similarly, g also commutes with R−1
1 . Note that 1J =

(1J)6 = 123123 implies that J = 23123 = 31231 = 12312, also (1J)2 = (1J)−3 = 3̄2̄1̄.
Now we check the order of elliptic cycles at x2 and x5:

g3 ◦ g2 = (13̄23)3(13̄2̄323)(13121̄3̄)

= 13(13̄2313̄2313̄23)(3̄2̄323)(3121̄3̄1̄)

= 151̄3̄1̄3̄(31231)3̄(23123)(31231)1̄3̄1̄3̄1̄

= 15(1̄3̄)2J 3̄J2(3̄1̄3̄1̄3̄)

= 15(1̄3̄)5,

g−1
1 ◦ g3 = (13̄2̄323)−1(13̄23)3(13̄2̄323)

= 12(3̄2̄3̄23)1̄3̄2313̄23123

= 12232̄(3̄2̄1̄)3̄2313̄(23123)

= 12232̄1J1J−1J−13̄2313̄J

= 1(1232̄1)1232̄

= (1232̄)3,

which yield that the order of g3 ◦ g2 is | 2p
3p−10

|, and the order of g−1
1 ◦ g3 is | 2p

p−6
|. By

Theorem 4.1, we obtain the fundamental domain in L1 (which is a hexagon) of the C-
Fuchsian group generated by g1, g2, g3. We list the explicit presentation for all values
of p = 3, 4, 5, 10 :

〈g1, g2, g3 : gp1, g
p
2, (g3 ◦ g2)|

2p
3p−10

|, (g−1
3 ◦ g1)|

2p
p−6
|〉.

Now the proof is complete.

Remark 4.4. By an almost similar method, one can also consider the structure
of C-Fuchsian subgroups in Thompson triangle groups for S2 and E2 in Table 2.
Recall the matrix normalisation (3.2) for Thompson triangle groups in section 3.2.
We describe these two cases roughly in what follows. We stress that calculations can
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be done in the same manner with the proof above and the situation is improving
significantly when one uses Mathematica for example.

(i) Thompson triangle group S2

〈R1, R2, R3 :Rp
1, R

p
2, R

p
3, (R1R2R3)5, br3(R1, R3), br3(R2, R3),

br4(R1, R2), (R1R2)|
4p
p−4
|, br5(R1, R2R3R

−1
2 ), (R1R2R3R

−1
2 )|

10p
3p−10

|〉.

It has the following pyramids of the side representatives of its fundamental domain

[3]1; 2, 3, [5] 2; 1, 232̄, [4] 3; 1, 2, [3] 232̄; 1, 3.

We force them to having the same base L1 :

[5] 2; 1, 232̄
23−→ [5] 3; 2313̄2̄, 2

3̄1̄−→ [5] 1; 3̄1̄2313̄2̄13, 3̄1̄213

[4] 3; 1, 2
3̄1̄−→ [4] 1; 3̄13, 3̄1̄213

[3] 232̄; 1, 3
2̄−→ [3] 3; 2̄12; 2̄32

3̄1̄−→ [3] 1; 3̄1̄2̄1213, 3̄1̄2̄3213.

We pay attention to the nonagon F with vertices xj = P(n1 � aj) (j = 1, · · · , 9) as
follows:

Figure 5. The nonagon F

a1 = 3̄1̄2̄n1, a2 = 3̄1̄2̄1n3, a3 = 3̄1̄n2, a4 = 3̄1̄23n1, a5 = 3̄1̄2312n3,

a6 = (3̄1̄)2231232̄n1, a7 = n3, a8 = n2, a9 = 2n3.

Note that the singular point x0 fixed by 3̄1̄Q−12Q313 (where Q = R1R2R3), lies in
the geodesic spanned by x1, x9. A direct computation yields that 3̄1̄Q−12Q313 maps
x1 to x9. Thence we consider the decagon comprising the following sides

(4.16) li =

 P(SpanC{xi−1, xi}) ∩ L1, i = 1, 2, · · · 9.

P(SpanC{x9, x0}) ∩ L1, i = 10.

In the same manner with the proof of Theorem 1.1, one can check that the following
side pairing transformations

g1 = (13)3, g2 = (13̄1̄213)3, g3 = (13̄1̄2313̄2̄13)2 ◦g2, g4 = (12)2 ◦g1, g5 = 3̄1̄Q−12Q313

satisfy

g1(l7) = l8, g2(l3) = l4, g3(l2) = l5, g4(l6) = l9, g5(l10) = l1.
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One can check that g2
5 = 1̄ and the cycle transformation for x4 satisfying

(g2 ◦ g−1
3 ) = 13(23̄2̄1̄)2.

Then we get the the presentation of C-Fuchsian group fixing L1 in Thompson group
S2 :

〈g1, g2, g3, g4, g5 :g
| 2p
p−6
|

1 , g
| 2p
p−6
|

2 , g2p
5 , (g2 ◦ g−1

3 )|
2p
p−4
|, (g1 ◦ g−1

4 )|
2p
p−4
|,

[g1, g
2
5], [g2, g

2
5], [g3, g

2
5], [g4, g

2
5]〉.

(ii) Thompson triangle group E2

〈R1, R2, R3 : Rp
1, R

p
2, R

p
3, (R1R2R3)6, br3(R2, R3), br4(R3, R1), (R1R3)|

4p
p−4
|, br4(R1, R2),

(R1R2)|
4p
p−4
|, br4(R1, R2R3R

−1
2 ), (R1R2R3R

−1
2 )|

4p
p−4
|, br6(R3, R1R2R

−1
1 ), (R3R1R2R

−1
1 )|

3p
p−3
|〉.

We restrict to the pyramids of the side representatives of its fundamental domain

[3]1; 2, 3, [6] 3̄13; 121̄, 3, [4] 232̄; 1, 3, [4] 3; 1, 2, [4] 2; 232̄, 23̄2̄1232̄,

and pay attention to [6] 3̄13; 121̄, 3. Let Q = R1R2R3. It is easily seen that Q3 acts as
a complex reflection with order 2 mapping the opposite vertices to each other. The
image of it under R3 is [6] 1; 3, 121̄. Now, we firstly consider the pentagon lying in L1

comprising the triangle from [3] 1; 2, 3 and a quadrilateral which is half of the hexagon
from [6] 1; 3, 121̄. It has vertices xj = P(n1 � aj) (see Figure 3), where

a1 = 31n2, a2 = 2̄1̄n3, a3 = n2, a4 = 2n3, a5 = n3.

Note that a0 is the polar vector of 3Q33̄ which has fixed point lying in the geodesic
spanned by x1, x2. It is a simple matter to check that the following side pairing trans-
formations

g1 = 3Q33̄ : x0 7−→ x0, x1 7−→ x2,

g2 = (12)2 : x3 7−→ x3, x2 7−→ x4,

g2 = (13)2 : x5 7−→ x5, x4 7−→ x1.

We get the C-Fuchsian group fixing L1 has the presentation

〈g1, g2, g3 : g2
1, g
| 2p
p−4
|

2 , g
| 2p
p−4
|

3 , (g2 ◦ g−1
1 ◦ g3)|

2p
p−4
|〉.

We claim that there exist C-Fuchsian subgroups fixing complex geodesic L3 which
are obviously not conjugate to the ones stated above. We consider the three pyramids
with quadrilateral bases and make each of them have the base in L3 :

[4] 3; 1, 2

[4] 232̄; 1, 3
2̄−→ [4] 3; 2̄12, 323̄

[4] 2; 232̄, 23̄2̄1232̄
23−→ [4] 3; 2, 313̄.

We glue the three quadrilaterals lying in L3 and get an octagon (see Figure 6) with
vertices yj = P(n3 � bj), where

b0 = n2, b1 = 23n1, b2 = 1̄3̄n2, b3 = n1,

b4 = 1n2,b5 = 2̄n1, b6 = 2̄1n3, b7 = 2̄3̄2̄n1.
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Figure 6. The octagon F

Let the sides denote by

(4.17) li =

 P(SpanC{yi−1, yi}) ∩ L3, i = 1, 2, · · · 7.

P(SpanC{y7, y0}) ∩ L3, i = 8.

One can check that the side pairing transformations

h1 = (23)3, h2 = (13)2, h3 = (2̄123)2, h4 = (2313̄2̄3)2 ◦ h1

satisfy

h1(l8) = l1, h2(l3) = l4, h3(l5) = l6, h4(l7) = l2.

In particular, we give an explanation for h4(l7) = l2. Note that 131n3 = n3 and
2313̄n2 = 31̄3̄n2 hold due to 13131̄3̄1̄ = 3 and br3(1, 232̄). Then we have

(2313̄2̄3)2(23)3(2̄1n3) = 32(2313̄2̄32313̄2̄)(23232)(2̄1n3)

= 32231(3̄2̄323)1231n3

= 3223(1212)31n3

= 3223212(131n3)

= 332313̄n2

= 3331̄3̄n2

= 341̄3̄n2,

which indicates that h4(y6) = y2. One can check the elliptic cycle at y4 satisfies
h2 ◦ h4 ◦ h3 = 36(3̄12̄1̄), then obtain the presentation of C-Fuchsian group fixing L3 :

〈h1, h2, h3, h4 : h
| 2p
p−6
|

1 , h
| 2p
p−4
|

2 , h
| 2p
p−4
|

3 , (h4 ◦ h−1
1 )|

2p
p−4
|, (h2 ◦ h4 ◦ h3)|

p
p−3
|〉.

The Fuchsian groups we investigate above are subgroups of non-arithmetic lattices
acting on the complex hyperbolic plane. One can immediately get that: if Γ is a lat-
tice and A ∈ Γ is a complex reflection fixing a complex geodesic LA, then StabΓ(LA)
intersects StabSU(2,1(LA) in a lattice. Then one can easily get the following proposi-
tion.
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Proposition 4.5. There exist lattices in StabSU(2,1)(L1), which could be embed-
ded in SU(1, 1). They are subgroups of the complex hyperbolic triangle groups, which
we considered in Theorem 1.1.
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