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GENERAL SOLUTION AND ULAM STABILITY OF GENERALIZED CQ

FUNCTIONAL EQUATION

Vediyappan Govindan, Jung Rye Lee∗, Sandra Pinelas, and P. Muniyappan

Abstract. In this paper, we introduce the following cubic-quartic functional equation of
the form

f(x+ 4y) + f(x− 4y) = 16 [f(x+ y) + f(x− y)]± 30f(−x) +
5

2
[f(4y)− 64f(y)] .

Further, we investigate the general solution and the Ulam stability for the above functional
equation in non-Archimedean spaces by using the direct method.

1. Introduction

Jun and Kim [7] introduced the following cubic functional equation

(1.1) f(2x + y) + f(2x− y) = 2f(x + y) + 2f(x− y) + 12f(x)

and they established the general solution and the Ulam stability for the functional equation
(1.1). The function f(x) = x3 satisfies the functional equation (1.1), which is thus called
a cubic functional equation. Every solution of the cubic functional equation is said to be
a cubic mapping. Now we introduce the cubic functional equation and quartic functional
equation

(1.2) f(x + 4y) + f(x− 4y) = 16 [f(x + y) + f(x− y)] + 30f(−x) +
5

2
[f(4y)− 64f(y)]

and

(1.3) f(x + 2y) + f(x− 2y) = 4f(x + y) + 4f(x− y) + 24f(y)− 6f(x).

It is easy to see that the function f(x) = x4 is a solution of the functional equation (1.3).
Thus, it is natural that (1.3) is called a quartic functional equation and every solution of
the quartic functional equation is said to be a quartic mapping.

In this section, we introduce the cubic-quartic functional equation of the form

(1.4) f(x + 4y) + f(x− 4y) = 16 [f(x + y) + f(x− y)]± 30f(−x) +
5

2
[f(4y)− 64f(y)]

Further, we investigate the general solution and the Ulam stability for the functional equa-
tion (1.4).
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By a non-Archimedean field we mean a field K equipped with a function (valuation)
| · | from K into [0,∞) such that |r| = 0 if and only if r = 0, |rs| = |r||s|, and |r + s| ≤
max{|r|, |s|} for all r, s ∈ K. Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N.

Definition 1.1. Let X be a vector space over a scalar field K with a non-Archimedean
nontrivial valuation | · |. A function ‖ · ‖ : X → K is a non-Archimedean norm (valuation)
if it satisfies the following conditions:
(i) ‖x‖ = 0 if and only if x = 0;
(ii) ‖rx‖ = |r|‖x‖ for all r ∈ K, x ∈ X;
(iii) The strong inequality (ultrametric); namely,

‖x + y‖ ≤ max{‖x‖, ‖y‖}
for all x, y ∈ X. Then (X, ‖ · ‖) is called a non-Archimedean space.
Due to the fact that

‖xm − xn‖ ≤ max{‖xj+1 − xj‖ : m ≤ j ≤ n− 1} (n > m),

a sequence {xn} is Cauchy if and only if {xn+1−xn} converges to zero in a non-Archimedean
space. By a complete non-Archimedean space we mean one in which every Cauchy sequence
is convergent. Furthermore, some of the research papers related to non-Archimedean spaces
are very useful to develop this article such as [1–4,10,15] and some of the other papers are
used to build this section (see [5, 6, 8, 9, 11–14,16]).

2. General solution for the cubic-quartic functional equation (1.4)

In this section, we find out the general solution of the cubic-quartic functional equation
(1.4).

Theorem 2.1. If a mapping f : X → Y satisfies the functional equation (1.2), then the
mapping f : X → Y satisfies the functional equation (1.1).

Proof. Putting x = y = 0 in (1.2), we get f(0) = 0. Setting y = 0 in (1.2), we obtain
f(−x) = −f(x) for all x ∈ X. Hence f is odd. Replacing (x, y) by (0, x) in (1.2) we get

(2.5) f(4x) = 64f(x)

for all x ∈ X. So

(2.6) f(x + 4y) + f(x− 4y) = 16 [f(x + y) + f(x− y)]− 30f(x)

for all x, y ∈ X. Replacing x by 4x in (2.6), we obtain

(2.7) f(4x + 4y) + f(4x− 4y) = 16 [f(4x + y) + f(4x− y)]− 30f(4x)

for all x, y ∈ X. It follows from (2.5) and (2.7) that

(2.8) f(4x + y) + f(4x− y) = 4 [f(x + y) + f(x− y)] + 120f(4x)

for all x, y ∈ X. Replacing x by x + y in (2.6), we obtain

(2.9) f(x + 5y) + f(x− 3y) = 16 [f(x + 2y) + f(x)]− 30f(x + y)

for all x, y ∈ X. Replacing x by x− y in (2.6), we obtain

(2.10) f(x− 5y) + f(x + 3y) = 16 [f(x− 2y) + f(x)]− 30f(x− y)

for all x, y ∈ X. Adding (2.9) and (2.10), we get

f(x + 5y) + f(x− 3y) + f(x− 5y) + f(x + 3y)

= 16 [f(x + 2y) + f(x− 2y)] + 32f(x)− 30 [f(x + y) + f(x− y)](2.11)
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for all x, y ∈ X. Further replacing y by x + y in (2.6), we obtain

(2.12) f(5x + 4y) + f(−3x− 4y) = 16 [f(2x + y)− f(y)]− 30f(x)

for all x, y ∈ X and replacing y by −x + y in (2.6), we get

(2.13) f(−3x + 4y) + f(5x− 4y) = 16 [f(y)− f(2x− y)]− 30f(x)

for all x, y ∈ X. Adding (2.12) and (2.13), we get

f(5x + 4y) + f(5x− 4y) + f(−3x + 4y) + f(−3x− 4y)

= 16 [f(2x + y) + f(2x− y)]− 60f(x)(2.14)

for all x, y ∈ X. Interchanging x by y in (2.14), we get

f(4x + 5y) + f(−4x + 5y) + f(4x− 3y) + f(−4x− 3y)

= 16 [f(x + 2y)− f(x− 2y)]− 60f(y)(2.15)

for all x, y ∈ X. Simplifying (2.15) and using oddness, we have

f(4x + 5y)− f(4x− 5y) + f(4x− 3y)− f(4x + 3y)

= 16 [f(x + 2y)− f(x− 2y)]− 60f(y)(2.16)

for all x, y ∈ X. It follows from (2.9) and (2.10) that

f(x + 5y)− f(x− 5y) + f(x− 3y)− f(x + 3y)

= 16 [f(x + 2y)− f(x− 2y)]− 30 [f(x + y)− f(x− y)](2.17)

for all x, y ∈ X. Replacing x by 4x in (2.17), we obtain

f(4x + 5y)− f(4x− 5y) + f(4x− 3y)− f(4x + 3y)

= 16 [f(4x + 2y)− f(4x− 2y)]− 30 [f(4x + y)− f(4x− y)](2.18)

for all x, y ∈ X. By comparing (2.16) and (2.18), we obtain

16 [f(x + 2y)− f(x− 2y)− 60f(x− 2y)]

= 16 [f(4x + 2y)− f(4x− 2y)]− 30 [f(4x + y)− f(4x− y)](2.19)

for all x, y ∈ X. Now by interchanging x and y in (2.19), we get

16 [f(2x + y)− f(2x− y)− 60f(x)]

= 16 [f(2x + 4y) + f(2x− 4y)]− 30 [f(x + 4y) + f(x− 4y)](2.20)

for all x, y ∈ X. It follows from (2.6) and (2.20) that

f(2x + y) + f(2x− y)(2.21)

= [f(2x + 4y) + f(2x− 4y)]− 30 [f(x + y) + f(x− y)] + 60f(x)

for all x, y ∈ X. Simplifying (2.21), we obtain

f(2x + 4y) + f(2x− 4y)(2.22)

= [f(2x + y) + f(2x− y)] + 30 [f(x + y) + f(x− y)]− 60f(x)

for all x, y ∈ X. Replacing x by 2x in (2.6), we obtain

(2.23) f(2x + 4y) + f(2x− 4y) = 16 [f(2x + y) + f(2x− y)]− 2400f(x)

for all x, y ∈ X. From (2.22) and (2.23), we get the desired equation (1.1).

Theorem 2.2. If an even mapping f : X → Y satisfies the functional equation (1.4),
then the mapping f : X → Y satisfies the functional equation (1.3).
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Proof. Putting x = y = 0 in (1.4), we get f(0) = 0. Replacing (x, y) by (0, x) in (1.4)
and using the evenness of f , we get

(2.24) f(4x) = 256f(x)

for all x ∈ X. It follows from (2.24) and (1.4) that

(2.25) f(x + 4y) + f(x− 4y) = 16 [f(x + y) + f(x− y)]− 30f(x) + 480f(y)

for all x, y ∈ X. Replacing x by 2x in (2.25), we have

(2.26) f(2x + 4y) + f(2x− 4y) = 16 [f(2x + y) + f(2x− y)]− 480f(x) + 480f(y)

for all x, y ∈ X. Replacing x by x + y in (2.25), we obtain

(2.27) f(x + 5y) + f(x− 3y) = 16 [f(x + 2y) + f(x)]− 30f(x + y) + 480f(y)

for all x, y ∈ X. Replacing x by x− y in (2.25), we obtain

(2.28) f(x− 5y) + f(x + 3y) = 16 [f(x− 2y) + f(x)]− 30f(x− y) + 480f(y)

for all x, y ∈ X. Adding (2.8) and (2.28), we get

f(x + 5y) + f(x− 3y) + f(x− 5y) + f(x + 3y)(2.29)

= 16 [f(x + 2y) + f(x− 2y)] + 32f(x)− 30 [f(x + y) + f(x− y)] + 960f(y)

for all x, y ∈ X. Replacing x by 4x in (2.29), we get

f(4x + 5y) + f(4x− 3y) + f(4x− 5y) + f(4x + 3y)(2.30)

= 16 [f(4x + 2y) + f(4x− 2y)] + 32f(4x)− 30 [f(4x + y) + f(4x− y)] + 960f(y)

for all x, y ∈ X. Replacing y by x + y in (2.25), we obtain

(2.31) f(5x + 4y) + f(−3x− 4y) = 16 [f(2x + y)− f(y)]− 30f(x) + 480f(x + y)

for all x, y ∈ X. Replacing y by x− y in (2.25), we have

(2.32) f(5x− 4y) + f(−3x + 4y) = 16 [f(2x− y) + f(y)]− 30f(x) + 480f(x− y)

for all x, y ∈ X. Adding (2.31) and (2.32), we obtain

f(5x + 4y) + f(−3x− 4y) + f(5x− 4y) + f(−3x + 4y)(2.33)

= 16 [f(2x + y) + f(2x− y)] + 32f(y)− 60f(x) + 480 [f(x + y) + f(x− y)]

for all x, y ∈ X. Interchanging x by y in (2.33) we get

f(4x + 5y) + f(4x + 3y) + f(4x− 5y) + f(4x− 3y)(2.34)

= 16 [f(x + 2y) + f(x− 2y)] + 32f(y)− 60f(x) + 480 [f(x + y) + f(x− y)]

for all x, y ∈ X. It follows from (2.30) and (2.34) that

16 [f(4x + 2y) + f(4x− 2y)] + 32f(4x)− 60 [f(4x + y) + f(4x− y)] + 960f(y)

= 16 [f(x + 2y) + f(x− 2y)] + 32f(y)− 60f(x) + 480 [f(x + y) + f(x− y)](2.35)

for all x, y ∈ X. Simplifying (2.35), we have

f(4x + 2y) + f(4x− 2y)− 60 [f(x + y) + f(x− y)]− [f(x + 2y) + f(x− 2y)]

= 774f(x)− 120f(y)(2.36)

for all x, y ∈ X. Interchanging x by y in (2.26), we have

(2.37) f(4x + 2y)− f(4x− 2y) = 16 [f(x + 2y)− f(x− 2y)]− 480f(y) + 480f(x)



Ulam stability of CQ functional equation 407

for all x, y ∈ X. It follows from (2.37) and (2.36) that

16 [f(x + 2y)− f(x− 2y)]− 480f(y) + 480f(x)− 60 [f(x + y) + f(x− y)]

− [f(x + 2y)− f(x− 2y)] = 774f(x)− 120f(y)(2.38)

for all x, y ∈ X. Simplifying (2.38), we get

(2.39) 15 [f(x + 2y) + f(x− 2y)]− 60 [f(x + y) + f(x− y)] = −90f(x) + 360f(y)

for all x, y ∈ X. Dividing (2.39) by 15, we get the required equation (1.3).

3. Stability of the cubic functional equation (1.2)

In this section, assume that G is an additive group and X is a complete non-Archimedean
normed space. Now before taking up the main subject, for a given mapping f : G → X,
we define the difference operator

Df(x, y) = f(x+4y)+f(x−4y)−16 [f(x + y) + f(x− y)]+30f(−x)− 5

2
[f(4y)− 64f(y)]

for all x, y ∈ G. We consider the following function inequality

‖Df(x, y)‖ ≤ ϕ(x, y)

for an upper bound ϕ : G×G→ [0,∞).

Theorem 3.1. Let ϕ : G×G→ [0,∞) be a function such that

(3.40) lim
n→∞

ϕ(4nx, 4ny)

|4|3n
= 0

for all x, y ∈ G and let for each x ∈ G the following limit exists

(3.41) lim
n→∞

max

{
ϕ(0, 4jx)

|4|3j
: 0 ≤ j < n

}
,

which is denoted by ϕC(x). Suppose that f : G→ X is an odd mapping satisfying

(3.42) ‖Df(x, y)‖ ≤ ϕ(x, y)

for all x, y ∈ G. Then there exists a cubic mapping C : G→ X such that

(3.43) ‖C(x)− f(x)‖ ≤ 1

|4|3
ϕC(x)

for all x ∈ G, and if, in addition,

lim
i→∞

lim
n→∞

max

{
ϕ(0, 4jx)

|4|3j
: i ≤ j < n + i

}
= 0

then C is the unique cubic mapping satisfying (3.43).

Proof. Replacing (x, y) by (0, x) in (3.42), we get

(3.44) ‖f(4x)− 64f(x)‖ ≤ ϕ(0, x)

for all x ∈ G. It follows from (3.44) that

(3.45) ‖f(4x)

43
− f(x)‖ ≤ ϕ(0, x)

43

for all x ∈ G. Replacing x by 22(n−1)x in (3.45), we get

(3.46) ‖ 1

43n
f(4nx)− 1

43(n−1)f(4n−1x)‖ ≤ ϕ(0, 4n−1x)

|43n|
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for all x ∈ G. It follows from (3.46) and (3.40) that the sequence
{

f(4nx)
43n

}
is Cauchy. Since

X is complete, we conclude that
{

f(4nx)
43n

}
is convergent. Set C(x) := limn→∞

f(4nx)
43n

. Using

induction, one can show that

(3.47) ‖f(4nx)

43n
− f(x)‖ ≤ 1

|43|
max

{
ϕ(0, 4ix)

|4|3i
: 0 ≤ i < n

}
for all n ∈ N and all x ∈ G. By taking n to approach infinity in (3.47) and using (3.41) one
obtains (3.43). By (3.40) and (3.42), we get

‖DC(x, y)‖ = lim
n→∞

1

|43n|
‖f(4nx, 4ny)‖ ≤ lim

n→∞

ϕ(4nx, 4ny)

|4|3n
= 0

for all x, y ∈ G. Therefore the mapping C : G→ X satisfies (1.2).
To prove the uniqueness property of C, let D be another cubic mapping satisfying (3.43).

Then

‖C(x)−D(x)‖ = lim
i→∞
|4|−3i‖C(4ix)−D(4ix)‖

≤ lim
i→∞
|4|−3i max

{
‖C(4ix)− f(4ix)‖, ‖f(4ix)−D(4ix)‖

}
≤ 1

|4|3
lim
i→∞

lim
n→∞

max

{
ϕ(0, 4jx)

|4|3j
: i ≤ j < n + i

}
for all x ∈ G. If

lim
i→∞

lim
n→∞

max

{
ϕ(0, 4jx)

|4|3j
: i ≤ j < n + i

}
= 0,

then C = D, and the proof is complete.

4. Stability of the quartic functional equation (1.4)

In this section, assume that G is an additive group and X is a complete non-Archimedean
normed space. Now before taking up the main subject, for a given mapping f : G → X,
we define the difference operator

Df(x, y) = f(x+4y)+f(x−4y)−16 [f(x + y) + f(x− y)]−30f(−x)− 5

2
[f(4y)− 64f(y)]

for all x, y ∈ G. We consider the following function inequality

‖Df(x, y)‖ ≤ ϕ(x, y)

for an upper bound ϕ : G×G→ [0,∞).

Theorem 4.1. Let ϕ : G×G→ [0,∞) be a function such that

(4.48) lim
n→∞

ϕ(4nx, 4ny)

|4|4n
= 0

for all x, y ∈ G and let for each x ∈ G the following limit exists

(4.49) lim
n→∞

max

{
ϕ(0, 4jx)

|4|4j
: 0 ≤ j < n

}
,

which is denoted by ϕQ(x). Suppose that f : G→ X is an even mapping satisfying

(4.50) ‖Df(x, y)‖ ≤ ϕ(x, y)
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for all x, y ∈ G. Then there exists a quartic mapping Q : G→ X such that

(4.51) ‖Q(x)− f(x)‖ ≤ 1

|4|4
ϕQ(x)

for all x ∈ G, and if, in addition,

lim
i→∞

lim
n→∞

max

{
ϕ(0, 4jx)

|4|4j
: i ≤ j < n + i

}
= 0

then Q is the unique quartic mapping satisfying (4.51).

Proof. Replacing (x, y) by (0, x) in (4.50), we get

(4.52) ‖f(4x)− 256f(x)‖ ≤ ϕ(0, x)

for all x ∈ G. It follows from (4.52) that

(4.53) ‖f(4x)

44
− f(x)‖ ≤ ϕ(0, x)

44

for all x ∈ G. Replacing x by 2n−1x in (4.53), we get

(4.54)

∥∥∥∥ 1

44n
f(4nx)− 1

44(n−1)f(4n−1x)

∥∥∥∥ ≤ ϕ(0, 4n−1x)

|44n|

for all x ∈ G. It follows from (4.54) and (4.48) that the sequence
{

f(4nx)
44n

}
is Cauchy. Since

X is complete, we conclude that
{

f(4nx)
44n

}
is convergent. Set Q(x) := limn→∞

f(4nx)
44n

. Using

induction, one can show that

(4.55) ‖f(4nx)

44n
− f(x)‖ ≤ 1

|44|
max

{
ϕ(0, 4ix)

|4|4i
: 0 ≤ i < n

}
for all n ∈ N and all x ∈ G. By taking n to approach infinity in (4.55) and using (4.49) one
obtains (4.51). By (4.48) and (4.50), we get

‖DQ(x, y)‖ = lim
n→∞

1

|44n|
‖f(4nx, 4ny)‖ ≤ lim

n→∞

ϕ(4nx, 4ny)

|4|4n
= 0

for all x, y ∈ G. Since f is even, we can easily show that Q is even. Thus the mapping
Q : G→ X satisfies (1.4). To prove the uniqueness property of Q, let R be another quartic
mapping satisfying (4.51). Then

‖Q(x)−R(x)‖ = lim
i→∞
|4|−4i‖Q(4ix)−R(4ix)‖

≤ lim
i→∞
|4|−4i max

{
‖Q(4ix)− f(4ix)‖, ‖f(4ix)−R(4ix)‖

}
≤ 1

|4|4
lim
i→∞

lim
n→∞

max

{
ϕ(0, 4jx)

|4|4j
: i ≤ j < n + i

}
for all x ∈ G. If

lim
i→∞

lim
n→∞

max

{
ϕ(0, 4jx)

|4|4j
: i ≤ j < n + i

}
= 0,

then Q = R, and the proof is complete.
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5. Stability of the cubic-quartic functional equation (1.4)

In this section, assume that G is an additive group and X is a complete non-Archimedean
normed space. Now before taking up the main subject, for a given mapping f : G → X,
we define the difference operator

Df(x, y) = f(x+4y)+f(x−4y)−16 [f(x + y) + f(x− y)]±30f(−x)− 5

2
[f(4y)− 64f(y)]

for all x, y ∈ G. We consider the following function inequality

‖Df(x, y)‖ ≤ ϕ(x, y)

for an upper bound ϕ : G×G→ [0,∞).

Theorem 5.1. Let ϕ : G×G→ [0,∞) be a function such that

lim
n→∞

ϕ(4nx, 4ny)

|4|3n
= lim

n→∞

ϕ(4nx, 4ny)

|4|4n
= 0

for all x, y ∈ G and let for each x ∈ G the following limits exist

lim
n→∞

max

{
ϕ(0, 4jx)

|4|3j
: 0 ≤ j < n

}
, and lim

n→∞
max

{
ϕ(0, 4jx)

|4|4j
: 0 ≤ j < n

}
denoted by ϕC(x) and denoted by ϕQ(x), respectively. Suppose that f : G → X is a
mapping satisfying

‖Df(x, y)‖ ≤ ϕ(x, y)

for all x, y ∈ G. Then there exist a cubic mapping C : G → X and a quartic mapping
Q : G→ X such that

‖f(x)− C(x)−Q(x)‖

≤ max

{
1

|2||4|3
max {ϕC(x), ϕC(−x)} , 1

|2||4|4
max {ϕQ(x), ϕQ(−x)}

}
(5.56)

for all x ∈ G, and if, in addition,

lim
i→∞

lim
n→∞

max

{
ϕ(0, 4jx)

|4|3j
: i ≤ j < n + i

}
= lim

i→∞
lim
n→∞

max

{
ϕ(0, 4jx)

|4|4j
: i ≤ j < n + i

}
= 0,

then C is the unique cubic mapping and Q is the unique quartic mapping.

Proof. Let f0(x) = 1
2

[f(x)− f(−x)] for all x ∈ G. Then f0(0) = 0, f0(−x) = −f0(x),
and

‖Df0(x, y)‖ ≤ 1

|2|
max{ϕ(x, y), ϕ(−x,−y)}

for all x, y ∈ G. From Theorem 3.1, it follows that there exists a unique cubic mapping
C : G→ X satisfying

‖f0(x)− C(x)‖ ≤ 1

|2||4|3
max{ϕC(x), ϕC(−x)}

for all x ∈ G. Let fe(x) = 1
2

[f(x)− f(−x)] for all x ∈ G. Then fe(0) = 0, fe(−x) = fe(x),
and

‖Dfe(x, y)‖ ≤ 1

2
max{ϕ(x, y), ϕ(−x,−y)}
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for all x, y ∈ G. From Theorem 4.1, it follows that there exists a unique quartic mapping
Q : G→ X satisfying

‖fe(x)−Q(x)‖ ≤ 1

|2||4|4
max {ϕQ(x), ϕQ(−x)}

for all x ∈ G. Thus we get the desired inequality (5.56)

6. Conclusion

In this paper, we have introduced the cubic-quartic functional equation (1.4) and we
have investigated the general solution and have proved the Ulam stability for the functional
equation (1.4) in non-Archimedean spaces by using the direct method.
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