ON HOM-LIE TRIPLE SYSTEMS AND INVOLUTIONS OF HOM-LIE ALGEBRAS

HAMDIATOU YARA AND PATRICIA L. ZOUNGRANA*

ABSTRACT. In this paper we mainly establish a relationship between involutions of multiplicative Hom-Lie algebras and Hom-Lie triple systems. We show that the -1-eigenspace of any involution on any multiplicative Hom-Lie algebra becomes a Hom-Lie triple system and we construct some examples of Hom-Lie triple systems using some involutions of some classical Hom-Lie algebras.

1. Introduction

Let \mathbb{K} be an arbitrary field of characteristic 0. Lie triple systems are subspaces of any Lie algebra which are closed under the ternary composition [[x, y], z]. They were first noted by E. Cartan in his work on geodesic submanifolds [3]. From the algebraic point of view, Lie triple systems were studied by N. Jacobson [6,7] and Lister [8].

In general, Lie triple systems have natural embeddings into certain canonical Lie algebras called "standard" and "universal" embeddings, and any Lie triple system can be shown to arise precisely as the -1-eigenspace of an involution on some Lie algebra [5].

The Hom-Lie algebras structures arose first in deformation of Lie algebras of vector fields. The notion of Hom-Lie algebras was introduced by Hartwig, Larsson and Silvestrov in [4] as part of a study of deformations of the Witt and Virasoro algebras. The notion of Hom-Lie triple system generalizing Lie triple system to a situation where the trilinear law is twisted by a linear map was introduced by D. Yau in [10]. The purpose of this paper consists in giving a relationship between involutions of

multiplicative Hom-Lie algebras and Hom-Lie triple systems.

The paper is organised as follows. In section 2, we recall some basic definitions and properties of Hom-Lie algebras and Hom-Lie triple systems. We derive new Hom-Lie triple systems from a given multiplicative Hom-Lie triple system and we construct Hom-Lie triple systems involving elements of the centroid of Lie triple systems. In section 3, we show that there exists a connection between involutions of multiplicative Hom-Lie algebras and Hom-Lie triple systems with some examples.

Received March 21, 2022. Revised June 8, 2022. Accepted June 9, 2022.

²⁰¹⁰ Mathematics Subject Classification: 17A40, 17B60.

Key words and phrases: Hom-Lie algebras, Hom-Lie triple systems, Involutions of Hom-Lie algebras.

^{*} Corresponding author.

⁽c) The Kangwon-Kyungki Mathematical Society, 2022.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

2. Hom-Lie triple systems

2.1. Preliminaries on Hom-Lie algebras.

DEFINITION 2.1. [2] A Hom-Lie algebra is a triple $(\mathcal{G}, [,], \alpha)$ consisting of a vector space \mathcal{G} over \mathbb{K} , a skew-symmetric bilinear map $[,] : \mathcal{G} \times \mathcal{G} \to \mathcal{G}$ and a linear map $\alpha : \mathcal{G} \to \mathcal{G}$ satisfying the following Hom-Jacobi identity :

(1)
$$[\alpha(x), [y, z]] + [\alpha(y), [z, x]] + [\alpha(z), [x, y]] = 0, \text{ for all } x, y, z \in \mathcal{G}.$$

Moreover, if $\alpha([x, y]) = [\alpha(x), \alpha(y)]$, for all $x, y \in \mathcal{G}$, the Hom-Lie algebra $(\mathcal{G}, [,], \alpha)$ is said to be multiplicative.

DEFINITION 2.2. Let $(\mathcal{G}, [,], \alpha)$ and $(\mathcal{G}', [,]', \alpha')$ be two Hom-Lie algebras. A map $f : \mathcal{G} \longrightarrow \mathcal{G}'$ is called a morphism of Hom-Lie algebras if f([x, y]) = [f(x), f(y)]' and $f(\alpha(x)) = \alpha'(f(x))$, for all $x, y \in \mathcal{G}$.

DEFINITION 2.3. Let $(\mathcal{G}, [,], \alpha)$ be a Hom-Lie algebra.

- 1. A Hom-Lie subalgebra of $(\mathcal{G}, [,], \alpha)$ is a subspace \mathcal{H} of \mathcal{G} such that for all $x, y \in \mathcal{H}, [x, y] \in \mathcal{H}$ and $\alpha(x) \in \mathcal{H}$.
- 2. An ideal of $(\mathcal{G}, [,], \alpha)$ is a subspace \mathcal{I} of \mathcal{G} such that for all $x \in \mathcal{I}$ and for all $y \in \mathcal{G}, [x, y] \in \mathcal{I}$ and $\alpha(x) \in \mathcal{I}$.

The following theorem can be found in [2].

THEOREM 2.4. Let $(\mathcal{G}, [,])$ be a Lie algebra. Let $\alpha : \mathcal{G} \longrightarrow \mathcal{G}$ be an endomorphism of the Lie algebra $(\mathcal{G}, [,])$. Let $[,]_{\alpha} : \mathcal{G} \times \mathcal{G} \longrightarrow \mathcal{G}$ be the map defined by $[x, y]_{\alpha} = \alpha([x, y])$, for all $x, y \in \mathcal{G}$. Then $(\mathcal{G}, [,]_{\alpha}, \alpha)$ is a multiplicative Hom-Lie algebra.

In what follows, using the theorem 2.4, we construct examples of Hom-Lie algebras from classical Lie algebras.

EXAMPLE 2.5. Case of the Lie algebra Sl(n)

Let us consider the Lie algebra (Sl(n), [,]) consisting of the square matrices X of order n with elements in K such that tr(X) = 0. We have

$$\mathcal{S}l(n) = \{ X \in \mathcal{M}_n(\mathbb{K}); tr(X) = 0 \}.$$

The map [,] is defined by : for all $X, Y \in Sl(n), [X, Y] = XY - YX$. Denote by Gl(n) the set of invertible matrices of order n with elements in K. We have

$$Gl(n) = \{X \in \mathcal{M}_n(\mathbb{K}); det(X) \neq 0\}.$$

Let $A \in Gl(n)$. Define the map

$$\alpha: \mathcal{S}l(n) \longrightarrow \mathcal{S}l(n), X \mapsto A^{-1}XA.$$

Let us show that α is an endomorphism of the Lie algebra (Sl(n), [,]). For all $X \in Sl(n)$, we have tr(X) = 0 and

$$tr(\alpha(X)) = tr(A^{-1}XA) = tr(A^{-1}AX) = tr(I_nX) = tr(X) = 0.$$

That means for all $X \in Sl(n), \alpha(X) \in Sl(n)$. Next, for all $X, Y \in Sl(n)$ and for all $k \in \mathbb{K}$, we have

$$\alpha(X+kY) = A^{-1}(X+kY)A \qquad = A^{-1}XA + kA^{-1}YA = \alpha(X) + k\alpha(Y).$$

That proves the linearity of α . Moreover, For all $X, Y \in \mathcal{S}l(n)$, we have,

$$\begin{split} [\alpha(X), \alpha(Y)] &= \alpha(X)\alpha(Y) - \alpha(Y)\alpha(X) \\ &= A^{-1}XAA^{-1}YA - A^{-1}YAA^{-1}XA \\ &= A^{-1}XI_nYA - A^{-1}YI_nXA \\ &= A^{-1}XYA - A^{-1}YXA \\ &= A^{-1}(XY - YX)A \\ &= A^{-1}[X, Y]A \\ &= \alpha([X, Y]). \end{split}$$

So, the map α is an endomorphism of the Lie algebra (Sl(n), [,]). Therefore $(Sl(n), [,]_{\alpha}, \alpha)$ is a multiplicative Hom-Lie algebra where $\alpha(X) = A^{-1}XA$ and $[X, Y]_{\alpha} = \alpha([X, Y]) = A^{-1}XYA - A^{-1}YXA$, for all $X, Y \in Sl(n)$.

EXAMPLE 2.6. Case of the Lie algebra So(n)

Let us consider the Lie algebra (So(n), [,]) consisting of the skew-symmetric matrices of order n with elements in \mathbb{K} . We have

$$\mathcal{S}o(n) = \left\{ X \in \mathcal{M}_n(\mathbb{K}); X^t = -X \right\}.$$

The map [,] is defined by : for all $X, Y \in So(n), [X, Y] = XY - YX$. Denote by O(n) the set of orthogonal matrices of order n with elements in \mathbb{K} . We have

$$O(n) = \left\{ X \in \mathcal{M}_n(\mathbb{K}); X^t X = X X^t = I_n \right\}.$$

Let $A \in O(n)$. Define the map

$$\alpha: \mathcal{S}o(n) \longrightarrow \mathcal{S}o(n), X \mapsto A^t X A$$

Let us show that α is an endomorphism of the Lie algebra $(\mathcal{S}o(n), [,])$. Let $X \in \mathcal{S}o(n)$. Then $X^t = -X$. Since, for all matrices M and N in $\mathcal{M}_n(\mathbb{K})$ we have $(MN)^t = N^t M^t$ and $(M^t)^t = M$, then it follows

$$(\alpha(X))^t = (A^t X A)^t = A^t X^t (A^t)^t = A^t (-X) A = -A^t X A = -\alpha(X).$$

That means for all $X \in So(n), \alpha(X) \in So(n)$. Next, for all $X, Y \in So(n)$ and for all $k \in \mathbb{K}$, we have

$$\alpha(X+kY) = A^t(X+kY)A = A^tXA + kA^tYA = \alpha(X) + k\alpha(Y).$$

That proves the linearity of α . Moreover, for all $X, Y \in So(n)$, we have

$$\begin{aligned} \left[\alpha(X), \alpha(Y) \right] &= \alpha(X)\alpha(Y) - \alpha(Y)\alpha(X) \\ &= A^t X A A^t Y A - A^t Y A A^t X A \\ &= A^t X I_n Y A - A^t Y I_n X A \\ &= A^t X Y A - A^t Y X A \\ &= A^t (XY - YX) A \\ &= A^t [X, Y] A \\ &= \alpha([X, Y]). \end{aligned}$$

So the map α is an endomorphism of the Lie algebra $(\mathcal{S}o(n), [,])$. Therefore $(\mathcal{S}o(n), [,]_{\alpha}, \alpha)$ is a multiplicative Hom-Lie algebra where $\alpha(X) = A^t X A$ and $[X, Y]_{\alpha} = \alpha([X, Y]) = A^t X Y A - A^t Y X A$, for all $X, Y \in \mathcal{S}o(n)$.

2.2. Hom-Lie triple systems.

DEFINITION 2.7. [1] A Lie triple system is a couple (T, [,]) consisting of a vector space T over \mathbb{K} and a trilinear map $[,]: T \times T \times T \to T$ satisfying

- 1. [x, y, z] = -[y, x, z],
- 2. [x, y, z] + [y, z, x] + [z, x, y] = 0,
- 3. [u, v, [x, y, z]] = [[u, v, x], y, z] + [x, [u, v, y], z] + [x, y, [u, v, z]],for all $x, y, z, u, v \in T$.

DEFINITION 2.8. [1] A Hom-Lie triple system is a triple $(T, [, ,], \alpha)$ consisting of a vector space T over \mathbb{K} , a trilinear map $[,,]: T \times T \times T \to T$ and a linear map $\alpha: T \to T$ satisfying

$$\begin{split} 1. \ & [x,y,z] = -[y,x,z], \\ 2. \ & [x,y,z] + [y,z,x] + [z,x,y] = 0, \\ 3. \ & [\alpha(u),\alpha(v),[x,y,z]] = [[u,v,x],\alpha(y),\alpha(z)] + [\alpha(x),[u,v,y],\alpha(z)] \\ & \quad + [\alpha(x),\alpha(y),[u,v,z]], \\ \text{for all } x,y,z,u,v \in T. \end{split}$$

Moreover, if $\alpha([x, y, z]) = [\alpha(x), \alpha(y), \alpha(z)]$, for all $x, y, z \in T$, then $(T, [,], \alpha)$ is called a multiplicative Hom-Lie triple system.

When α is the identity map, we recover the classical Lie triple system. So Lie triple systems are examples of Hom-Lie triple systems.

DEFINITION 2.9. Let $(T, [,], \alpha)$ and $(T', [,]', \alpha')$ be two Hom-Lie triple systems. A linear map $f : T \longrightarrow T'$ is called morphism of Hom-Lie triple systems if for all $x, y, z \in T, f([x, y, z]) = [f(x), f(y), f(z)]'$ and $f(\alpha(x)) = \alpha'(f(x))$.

DEFINITION 2.10. Let $(T, [, ,], \alpha)$ be a Hom-Lie triple system.

- 1. A Hom-Lie triple subsystem of T is a subspace S of T such that for all $x, y, z \in S$, $[x, y, z] \in S$ and $\alpha(x) \in S$.
- 2. An ideal of T is a subspace I of T such that for all $x \in I$ and for all $y, z \in T, [x, y, z] \in I$ and $\alpha(x) \in I$.

THEOREM 2.11. Let (T, [,]) be a Lie triple system, $\alpha : T \longrightarrow T$ a morphism of the Lie triple systems T. Then $(T, [,]_{\alpha}, \alpha)$ is a Hom-Lie triple system where $[,]_{\alpha} = \alpha \circ [,].$

Proof. As the map α is linear and the map [,,] is trilinear then the map $\alpha \circ [,,]$ is trilinear. So the map $[,,]_{\alpha}$ is trilinear.

i) For all $x, y, z \in T$, we have

$$[x, y, z]_{\alpha} = \alpha([x, y, z]) \qquad = \alpha(-[y, x, z]) = -\alpha([y, x, z]) \qquad = -[y, x, z]_{\alpha}.$$

ii) For all $x, y, z \in T$, we have

$$\begin{split} [x, y, z]_{\alpha} + [y, z, x]_{\alpha} + [z, x, y]_{\alpha} &= \alpha([x, y, z]) + \alpha([y, z, x]) + \alpha([z, x, y]) \\ &= \alpha([x, y, z] + [y, z, x] + [z, x, y]) \\ &= \alpha(0) \\ &= 0. \end{split}$$

iii) For all $x, y, z, u, v \in T$, we have

$$\begin{split} &[\alpha(u), \alpha(v), [x, y, z]_{\alpha}]_{\alpha} \\ &= \alpha([\alpha(u), \alpha(v), \alpha([x, y, z])]) \\ &= \alpha \circ \alpha([u, v, [x, y, z]]) \\ &= \alpha \circ \alpha([[u, v, x], y, z] + [x, [u, v, y], z] + [x, y, [u, v, z]]) \\ &= \alpha \circ \alpha(([u, v, x], y, z]) + \alpha \circ \alpha([x, [u, v, y], z]) + \alpha \circ \alpha([x, y, [u, v, z]]) \\ &= \alpha([\alpha([u, v, x]), \alpha(y), \alpha(z)]) + \alpha([\alpha(x), \alpha([u, v, y]), \alpha(z)]) \\ &+ \alpha([\alpha(x), \alpha(y), \alpha([u, v, z])]) \\ &= [[u, v, x]_{\alpha}, \alpha(y), \alpha(z)]_{\alpha} + [\alpha(x), [u, v, y]_{\alpha}, \alpha(z)]_{\alpha} + [\alpha(x), \alpha(y), [u, v, z]_{\alpha}]_{\alpha}. \end{split}$$

Therefore $(T, [, ,]_{\alpha}, \alpha)$ is a Hom-Lie triple system.

It is well-known that, any subspace of a Lie algebra $(\mathcal{G}, [,])$ closed under the ternary product [x, y, z] = [[x, y], z], is a Lie triple system relative to [,,]. But, for an arbitrary Hom-Lie algebra $(\mathcal{G}, [,], \alpha)$, it is not natural to construct a Hom-Lie triple system without some conditions on the map α . The following theorem can be found in [9].

THEOREM 2.12. [9] Let $(\mathcal{G}, [,], \alpha)$ be a multiplicative Hom-Lie algebra. Then $(\mathcal{G}, [,], \alpha^2)$ is a multiplicative Hom-Lie triple system where $[x, y, z] = [[x, y], \alpha(z)]$, for all $x, y, z \in \mathcal{G}$.

REMARK 2.13. The fact that the Hom-Lie algebra $(\mathcal{G}, [,], \alpha)$ is multiplicative, is necessary in the theorem 2.12.

COROLLARY 2.14. Let $(\mathcal{G}, [,], \alpha)$ be a multiplicative Hom-Lie algebra. Then, any subspace T of \mathcal{G} closed under the ternary product $[x, y, z] = [[x, y], \alpha(z)]$ and α^2 , determines a multiplicative Hom-Lie triple system $(T, [,], \alpha^2)$.

Proof. Let $(\mathcal{G}, [,], \alpha)$ be a multiplicative Hom-Lie algebra. Let T be a subspace of \mathcal{G} closed under the ternary product $[x, y, z] = [[x, y], \alpha(z)]$ and α^2 . By the theorem 2.12, $(\mathcal{G}, [, ,], \alpha^2)$ is a multiplicative Hom-Lie triple system. So, T becomes a Hom-Lie triple subsystem of $(\mathcal{G}, [, ,], \alpha^2)$. Therefore $(T, [, ,], \alpha^2)$ is a multiplicative Hom-Lie triple system.

We give here some examples of Hom-Lie triple systems by using multiplicative Hom-Lie algebras as in the theorem 2.12.

EXAMPLE 2.15. Case of Sl(n)Consider the multiplicative Hom-Lie algebra $(Sl(n), [,]_{\alpha}, \alpha)$ given in the example 2.5, where $\alpha(X) = A^{-1}XA$, $[X, Y]_{\alpha} = A^{-1}XYA - A^{-1}YXA$, for all X, $Y \in Sl(n)$ and $A \in GL(n)$. For all $X \in Sl(n)$, we have

$$\alpha^{2}(X) = \alpha(\alpha(X)) = \alpha(A^{-1}XA) = A^{-1}(A^{-1}XA)A = (A^{-1})^{2}XA^{2}.$$

For all $X, Y, Z \in Sl(n)$, we have

$$\begin{split} [X,Y,Z]_{\alpha} &= [[X,Y]_{\alpha},\alpha(Z)]_{\alpha} \\ &= [A^{-1}XYA - A^{-1}YXA, A^{-1}ZA] \\ &= [A^{-1}XYA, A^{-1}ZA] - [A^{-1}YXA, A^{-1}ZA] \\ &= A^{-1}(A^{-1}XYA)(A^{-1}ZA)A - A^{-1}(A^{-1}ZA)(A^{-1}XYA)A \\ &\quad -A^{-1}(A^{-1}YXA)(A^{-1}ZA)A + A^{-1}(A^{-1}ZA)(A^{-1}YXA)A \\ &= (A^{-1})^2XYZA^2 - (A^{-1})^2ZXYA^2 - (A^{-1})^2YXZA^2 + (A^{-1})^2ZYXA^2. \end{split}$$

By the theorem 2.12, the triple $(Sl(n), [,]_{\alpha}, \alpha^2)$ is a multiplicative Hom-Lie triple system where for all $X, Y, Z \in Sl(n), \alpha^2(X) = (A^{-1})^2 X A^2$ and $[X, Y, Z]_{\alpha} = (A^{-1})^2 X Y Z A^2 - (A^{-1})^2 Z X Y A^2 - (A^{-1})^2 Y X Z A^2 + (A^{-1})^2 Z Y X A^2$.

EXAMPLE 2.16. Case of So(n)

Consider the multiplicative Hom-Lie algebra $(\mathcal{S}o(n), [,]_{\alpha}, \alpha)$ given in the example 2.6, where $\alpha(X) = A^t X A$, $[X, Y]_{\alpha} = A^t X Y A - A^t Y X A$, for all X, $Y \in \mathcal{S}o(n)$ and $A \in O(n)$. For all $X \in \mathcal{S}o(n)$, we have

$$\alpha^2(X) = \alpha(\alpha(X)) = \alpha(A^t X A) = A^t (A^t X A) A = (A^t)^2 X A^2.$$

For all $X, Y, Z \in \mathcal{S}o(n)$, we have $\begin{bmatrix} Y & Y \\ Z \end{bmatrix} = -\begin{bmatrix} [Y & Y] \\ -c(Z) \end{bmatrix}$

$$[X, Y, Z]_{\alpha} = [[X, Y]_{\alpha}, \alpha(Z)]_{\alpha}$$

$$= [A^{t}XYA - A^{t}YXA, A^{t}ZA]$$

$$= [A^{t}XYA, A^{t}ZA] - [A^{t}YXA, A^{t}ZA]$$

$$= A^{t}(A^{t}XYA)(A^{t}ZA)A - A^{t}(A^{t}ZA)(A^{t}XYA)A$$

$$- A^{t}(A^{t}YXA)(A^{t}ZA)A + A^{t}(A^{t}ZA)(A^{t}YXA)A$$

$$= (A^{t})^{2}XYZA^{2} - (A^{t})^{2}ZXYA^{2} - (A^{t})^{2}YXZA^{2} + (A^{t})^{2}ZYXA^{2}.$$

By the theorem 2.12, the triple $(\mathcal{S}o(n), [, ,]_{\alpha}, \alpha^2)$ is a multiplicative Hom-Lie triple sys-

tem where for all $X, Y, Z \in So(n), \alpha^2(X) = (A^t)^2 X A^2$ and $[X, Y, Z]_{\alpha} = (A^t)^2 X Y Z A^2 - (A^t)^2 Z X Y A^2 - (A^t)^2 Y X Z A^2 + (A^t)^2 Z Y X A^2$.

We may also derive new Hom-Lie triple systems from a given multiplicative Hom-Lie triple system. This procedure allows to generate a sequence of multiplicative Hom-Lie triple systems starting with any multiplicative Hom-Lie triple system. Let $(T, [, ,], \alpha)$ be a multiplicative Hom-Lie triple system and n be a positive integer. Let the map $[, ,]^{(n)} : T \times T \times T \longrightarrow T$ defined by $[, ,]^{(n)} = \alpha^n \circ [, ,]$. We have the following theorem.

THEOREM 2.17. The triple $(T, [, ,]^{(n)}, \alpha^{n+1})$ is a multiplicative Hom-Lie triple system, called the n^{th} derived Hom-Lie triple system of T. In particular for n = 0 we have the multiplicative Hom-Lie triple system $(T, [, ,], \alpha)$.

Proof. Let $n \in \mathbb{N}$. It is obvious that the maps $[,,]^{(n)}$ and α^{n+1} are respectively trilinear and linear.

i) For all $x, y, z \in T$, we have

$$[x,y,z]^{(n)} = \alpha^n([x,y,z]) = \alpha^n(-[y,x,z]) = -[y,x,z]^{(n)}.$$

$$\begin{array}{l} \text{ii) For all } x, y, z \in T, \text{ we have} \\ [x, y, z]^{(n)} + [y, z, x]^{(n)} + [z, x, y]^{(n)} &= \alpha^n([x, y, z]) + \alpha^n([y, z, x]) + \alpha^n([z, x, y]) \\ &= \alpha^n([x, y, z] + [y, z, x] + [z, x, y]) \\ &= \alpha^n(0) \\ &= 0 \end{array}$$

iii) By using the fact that the Hom-Lie triple system $(T, [,], \alpha)$ is multiplicative and the linearity of the map α , we have for all $x, y, z, u, v \in T$, $[\alpha^{n+1}(u), \alpha^{n+1}(v), [x, y, z]^{(n)}]^{(n)}$

$$\begin{aligned} &= \alpha^{n} ([\alpha^{n+1}(u), \alpha^{n+1}(v), \alpha^{n}([x, y, z])]) \\ &= \alpha^{2n} ([\alpha(u), \alpha(v), [x, y, z]]) \\ &= \alpha^{2n} ([[u, v, x], \alpha(y), \alpha(z)] + [\alpha(x), [u, v, y], \alpha(z)] + [\alpha(x), \alpha(y), [u, v, z]]) \\ &= \alpha^{2n} ([[u, v, x], \alpha(y), \alpha(z)]) + \alpha^{2n} ([\alpha(x), [u, v, y], \alpha(z)]) + \alpha^{2n} ([\alpha(x), \alpha(y), [u, v, z]]) \\ &= \alpha^{n} ([\alpha^{n}([u, v, x]), \alpha^{n+1}(y), \alpha^{n+1}(z)]) + \alpha^{n} ([\alpha^{n+1}(x), \alpha^{n}([u, v, y]), \alpha^{n+1}(z)]) \\ &+ \alpha^{n} ([\alpha^{n+1}(x), \alpha^{n+1}(y), \alpha^{n}([u, v, z])]) \\ &= [[u, v, x]^{(n)}, \alpha^{n+1}(y), \alpha^{n+1}(z)]^{(n)} + [\alpha^{n+1}(x), [u, v, y]^{(n)}, \alpha^{n+1}(z)]^{(n)} \\ &+ [\alpha^{n+1}(x), \alpha^{n+1}(y), [u, v, z]^{(n)}]^{(n)}. \end{aligned}$$

Therefore $(T, [, ,]^{(n)}, \alpha^{n+1})$ is a multiplicative Hom-Lie triple system.

In the following we construct Hom-Lie triple systems involving elements of the centroid of Lie triple systems.

DEFINITION 2.18. [11] Let (T, [,]) be a Lie triple system. The centroide of (T, [,])is the set denoted by Cent(T) and defined by

$$Cent(T) = \{ \alpha \in End(T); \alpha([x, y, z]) = [\alpha(x), y, z], \text{ for all } x, y, z \in T \}$$

REMARK 2.19. For any Lie triple system (T, [,]), if $\alpha \in Cent(T)$ then we have $\alpha([x, y, z]) = [x, \alpha(y), z] = [x, y, \alpha(z)], \text{ for all } x, y, z \in T.$ Hence, $\alpha \in Cent(T) \Leftrightarrow \alpha([x, y, z]) = [\alpha(x), y, z] = [x, \alpha(y), z] = [x, y, \alpha(z)]$, for all $x, y, z \in Cent(T)$ T.

THEOREM 2.20. Let (T, [,]) be a Lie triple system, $\alpha \in Cent(T)$ and k, $n \in \mathbb{N}$. Define the map $[,,]^n_{\alpha}$ by $[x,y,z]^n_{\alpha} = [\alpha^n(x),y,z]$, for all $x,y,z \in T$. Then $(T, [,]^n_{\alpha}, \alpha^k)$ is a Hom-Lie triple system.

Proof. It is obvious that the maps α^n and α^k are linears. Since $\alpha \in Cent(T)$, it follows that

$$[x, y, z]^n_{\alpha} = [\alpha^n(x), y, z] = \alpha^n([x, y, z]), \text{ for all } x, y, z \in T.$$

So $[,,]^n_{\alpha} = \alpha^n \circ [,,]$. Therefore $[,,]^n_{\alpha}$ is a trilinear map. i) For all $x, y, z \in T$, we have

$$[x, y, z]^n_{\alpha} = \alpha^n([x, y, z]) \qquad = \alpha^n(-[y, x, z]) = -\alpha^n([y, x, z]) \qquad = -[y, x, z]^n_{\alpha}$$

ii) For all $x, y, z \in T$, we have $[x,y,z]^n_\alpha + [y,z,x]^n_\alpha + [z,x,y]^n_\alpha$ $= \alpha^{n}([x, y, z]) + \alpha^{n}([y, z, z]) + \alpha^{n}([z, x, z])$ $= \alpha^{n}([x, y, z] + [y, z, x] + [z, x, y])$ $= \alpha^n(0)$ = 0.

iii) For all $x, y, z, u, v \in T$, we have

$$\begin{split} & [\alpha^{k}(u), \alpha^{k}(v), [x, y, z]_{\alpha}^{n}]_{\alpha}^{n} \\ &= \alpha^{n}([\alpha^{k}(u), \alpha^{k}(v), \alpha^{n}([x, y, z])]) \\ &= \alpha^{2n+2k}([u, v, [x, y, z]]) \\ &= \alpha^{2n+2k}([[u, v, x], y, z] + [x, [u, v, y], z] + [x, y, [u, v, z]]) \\ &= \alpha^{2n+2k}([[u, v, x], y, z]) + \alpha^{2n+2k}([x, [u, v, y], z]) + \alpha^{2n+2k}([x, y, [u, v, z]]) \\ &= \alpha^{n}([\alpha^{n}([u, v, x]), \alpha^{k}(y), \alpha^{k}(z)]) + \alpha^{n}([\alpha^{k}(x), \alpha^{n}([u, v, y]), \alpha^{k}(z)]) \\ &+ \alpha^{n}([\alpha^{k}(x), \alpha^{k}(y), \alpha^{n}([u, v, z])]) \\ &= [[u, v, x]_{\alpha}^{n}, \alpha^{k}(y), \alpha^{k}(z)]_{\alpha}^{n} + [\alpha^{k}(x), [u, v, y]_{\alpha}^{n}, \alpha^{k}(z)]_{\alpha}^{n} + [\alpha^{k}(x), \alpha^{k}(y), [u, v, z]_{\alpha}^{n}]_{\alpha}^{n}. \end{split}$$
Thus $(T, [,]_{\alpha}^{n}, \alpha^{k})$ is a Hom-Lie triple system. \Box

3. Involutions of Hom-Lie algebras and Hom-Lie triple systems

By the corollary 2.14, we see that any subspace of a multiplicative Hom-Lie algebra $(\mathcal{G}, [,], \alpha)$ closed under the map α^2 and the ternary product $[x, y, z] = [[x, y], \alpha(z)]$, is a multiplicative Hom-Lie triple system. We use this process to establish a connection between involutions of multiplicative Hom-Lie algebras and Hom-Lie triple systems. Start by recalling the definition of an involution of Hom-Lie algebra.

DEFINITION 3.1. A linear map $\theta : \mathcal{G} \to \mathcal{G}$ is an involution of a Hom-Lie algebra $(\mathcal{G}, [,], \alpha)$ if

1. $\theta([x, y]) = [\theta(x), \theta(y)]$, for all $x, y \in \mathcal{G}$; 2. $\theta \circ \alpha = \alpha \circ \theta$; 3. $\theta \circ \theta = id_{\mathcal{G}}$.

also $\theta(x) = -x, \theta(y) = -y$ et $\theta(z) = -z$. It follows that

THEOREM 3.2. Let $(\mathcal{G}, [,], \alpha)$ be a multiplicative Hom-Lie algebra. Let θ be an involution of $(\mathcal{G}, [,], \alpha)$. Define $\mathcal{G}_{\theta}^- = \{x \in \mathcal{G}; \theta(x) = -x\}$. Then $(\mathcal{G}_{\theta}^-, [,,], \alpha^2)$ is a multiplicative Hom-Lie triple system where $[x, y, z] = [[x, y], \alpha(z)]$, for all $x, y, z \in \mathcal{G}$.

Proof. As \mathcal{G}_{θ}^{-} is the -1-eigenspace of θ in \mathcal{G} , then \mathcal{G}_{θ}^{-} is a subspace of \mathcal{G} . So, we just need to show that \mathcal{G}_{θ}^{-} is closed under the maps [,,] and α^{2} . Let $x, y, z \in \mathcal{G}_{\theta}^{-}$. We have $\theta([x, y, z]) = \theta([[x, y], \alpha(z)])$. Since θ is an involution of $(\mathcal{G}, [,], \alpha)$, then for all $u, v \in \mathcal{G}$, $\theta([u, v]) = [\theta(u), \theta(v)]$ and $\theta \circ \alpha = \alpha \circ \theta$. We have

$$\theta([x, y, z]) = [[-x, -y], \alpha(-z)] = -[[x, y], \alpha(z)] = -[x, y, z].$$

That means $[x, y, z] \in \mathcal{G}_{\theta}^{-}$. Let $x \in \mathcal{G}_{\theta}^{-}$. Then $\theta(x) = -x$. As $\theta \circ \alpha = \alpha \circ \theta$, it comes that, $\theta(\alpha^{2}(x)) = \alpha^{2}(\theta(x)) = \alpha^{2}(-x) = -\alpha^{2}(x)$. That means $\alpha^{2}(x) \in \mathcal{G}_{\theta}^{-}$. By the corollary 2.14, $(\mathcal{G}_{\theta}^{-}, [,], \alpha^{2})$ is a multiplicative Hom-Lie triple system. \Box

PROPOSITION 3.3. Let $(\mathcal{G}, [,])$ be a Lie algebra. Let θ be an involution of $(\mathcal{G}, [,])$ and α an endomorphism of $(\mathcal{G}, [,])$ such that $\theta \circ \alpha = \alpha \circ \theta$. Define $\mathcal{G}_{\theta}^{-} = \{x \in \mathcal{G}; \theta(x) = -x\}$. Then the triples $(\mathcal{G}_{\theta}^{-}, [,,]_{\alpha}^{1}, \alpha)$ and $(\mathcal{G}_{\theta}^{-}, [,,]_{\alpha}^{2}, \alpha^{2})$ are multiplicative Hom-Lie triple systems where $[x, y, z]_{\alpha}^{1} = \alpha([[x, y], z])$ and $[x, y, z]_{\alpha}^{2} = \alpha^{2}([[x, y], z])$ for all $x, y, z \in \mathcal{G}$. The triple $(\mathcal{G}_{\theta}^{-}, [,,]_{\alpha}^{2}, \alpha^{2})$ is the first derived Hom-Lie triple system of $(\mathcal{G}_{\theta}^{-}, [,,]_{\alpha}^{1}, \alpha)$.

Proof. In the one hand, the vector space \mathcal{G}_{θ}^{-} with [,,] is a Lie triple system as the -1-eigenspace of the involution θ of the Lie algebra \mathcal{G} where $[x, y, z] = [[x, y], z], \text{ for all } x, y, z \in \mathcal{G}.$ For all $x \in \mathcal{G}_{\theta}^{-}$, we have

 $\theta(\alpha(x)) = \alpha(\theta(x)) = \alpha(-x) = -\alpha(x);$

that implies $\alpha(x) \in \mathcal{G}_{\theta}^{-}$. So \mathcal{G}_{θ}^{-} is closed under α .

Moreover, for all $x, y, z \in \mathcal{G}_{\theta}^{-}$, we have $\alpha([x, y, z]) = [\alpha(x), \alpha(y), \alpha(z)]$. So α is an endomorphism of the Lie triple system $(\mathcal{G}_{\theta}^{-}, [, ,])$. By using the theorem 2.11, the triple $(\mathcal{G}_{\theta}^{-}, [, ,]_{\alpha}^{1}, \alpha)$ is multiplicative Hom-Lie triple system.

In the other hand, we know by theorem 2.4, that $(\mathcal{G}, [,]_{\alpha} = \alpha \circ [,], \alpha)$ is a multiplicative Hom-Lie algebra. Since $\theta \circ \theta = id_{\mathcal{G}}, \ \theta \circ \alpha = \alpha \circ \theta$ and

$$\theta([x,y]_{\alpha}) = \theta(\alpha([x,y])) = \alpha(\theta([x,y])) = \alpha([\theta(x),\theta(y)]) = [\theta(x),\theta(y)]_{\alpha},$$

then θ is also an involution of the multiplicative Hom-Lie algebra $(\mathcal{G}, [,]_{\alpha}, \alpha)$. Moreover, we have for all $x, y, z \in \mathcal{G}$

$$[x, y, z]^{2}_{\alpha} = \alpha^{2}([[x, y], z]) = \alpha([\alpha([x, y]), \alpha(z)]) = [[x, y]_{\alpha}, \alpha(z)]_{\alpha}.$$

So, by using the theorem 3.2, the triple $(\mathcal{G}_{\theta}^{-}, [,,]_{\alpha}^{2}, \alpha^{2})$ is a multiplicative Hom-Lie triple system. Since $[,,]_{\alpha}^{2} = \alpha \circ [,,]_{\alpha}^{1}$, therefore $(\mathcal{G}_{\theta}^{-}, [,,]_{\alpha}^{2}, \alpha^{2})$ is the first derived Hom-Lie triple system of $(\mathcal{G}_{\theta}^{-}, [,,]_{\alpha}^{1}, \alpha)$.

In what follows, we give some examples of construction of Hom-Lie triple systems with involutions of classical Hom-Lie algebras.

EXAMPLE 3.4. Let n be a positive integer such that $n \ge 2$. Let n_1 and n_2 be two positive integers such that $n_1 + n_2 = n$ and $0 < n_1, n_2 < n$.

Put $J = \begin{pmatrix} I_{n_1} & 0 \\ 0 & -I_{n_2} \end{pmatrix}$. It is clear that $J^2 = I_n$. Let A be a matrix in GL(n) such that AJ = JA.

Consider in the example 2.5, the multiplicative Hom-Lie algebra

 $(\mathcal{S}l(n), [,]_{\alpha}, \alpha)$ where $\alpha(X) = A^{-1}XA$ and $[X, Y]_{\alpha} = A^{-1}XYA - A^{-1}YXA$, for all $X, Y \in \mathcal{S}l(n)$. Define the map $\theta : \mathcal{S}l(n) \longrightarrow \mathcal{S}l(n), X \mapsto JXJ$. The map θ is an involution of the Hom-Lie algebra $(\mathcal{S}l(n), [,]_{\alpha}, \alpha)$. Indeed, for all $X \in \mathcal{S}l(n)$, we have,

$$tr(\theta(X)) = tr(JXJ) = tr(JJX) = tr(I_nX) = tr(X) = 0.$$

That means for all $X \in Sl(n), \theta(X) \in Sl(n)$. Also, for all $X, Y \in Sl(n)$ and for all $k \in \mathbb{K}$, we have,

$$\theta(X+kY) = J(X+kY)J = JXJ + kJYJ = \theta(X) + k\theta(Y).$$

That proves the linearity of θ .

Moreover for all X in Sl(n), we have

$$\theta^2(X) = \theta(\theta(X)) = \theta(JXJ) = J^2XJ^2 = X.$$

That means $\theta^2 \equiv id_{\mathcal{S}l(n)}$. By using the fact that AJ = JA, we have for all $X \in \mathcal{S}l(n)$,

 $\theta(\alpha(X)) = \theta(A^{-1}XA) = JA^{-1}XAJ = A^{-1}JXJA = \alpha(JXJ) = \alpha(\theta(X)).$

So $\theta(\alpha(X)) = \alpha(\theta(X))$, for all $X \in Sl(n)$. By using the fact that $J^2 = I_n$, we have for all $X, Y \in Sl(n)$, $\theta([X,Y]_{\alpha}) = \theta(A^{-1}XYA - A^{-1}YXA)$ $= J(A^{-1}XYA - A^{-1}YXA)J$ $= JA^{-1}XYAJ - JA^{-1}YXAJ$ $= A^{-1}JXI_nYJA - A^{-1}JYI_nXJA$ $= A^{-1}(JXJ)(JYJ)A - A^{-1}(JYJ)(JXJ)A$ $= A^{-1}\theta(X)\theta(Y)A - A^{-1}\theta(Y)\theta(X)A$ $= [\theta(X), \theta(Y)]_{\alpha}.$

So $\theta([X,Y]_{\alpha}) = [\theta(X), \theta(Y)]_{\alpha}$, for all $X, Y \in \mathcal{S}l(n)$.

Therefore the map θ is an involution of the Hom-Lie algebra $(\mathcal{S}l(n), [,]_{\alpha}, \alpha)$. By the theorem 3.2, the -1-eigenspace of θ in $\mathcal{S}l(n)$ defined by

$$\mathcal{S}l(n)_{\theta}^{-} = \{X \in \mathcal{S}l(n); \theta(X) = -X\} = \{X \in \mathcal{S}l(n); JX = -XJ\}$$

is a Hom-Lie triple system relative to α^2 and $[,,]_{\alpha}$ where

$$[X, Y, Z]_{\alpha} = [[X, Y]_{\alpha}, \alpha(Z)]_{\alpha}$$
 for all $X, Y, Z \in \mathcal{S}l(n)$.

EXAMPLE 3.5. Let A be a matrix in O(n). Then $A^t = A^{-1}$. It follows that $A = (A^{-1})^t = (A^t)^{-1}$.

Consider in the example 2.5, the multiplicative Hom-Lie algebra

 $(\mathcal{S}l(n), [,]_{\alpha}, \alpha)$ where $\alpha(X) = A^{-1}XA$ and $[X, Y]_{\alpha} = A^{-1}XYA - A^{-1}YXA$,

for all $X, Y \in Sl(n)$. Define the map $\theta : Sl(n) \longrightarrow Sl(n), X \mapsto -X^t$. The map θ is an involution of the Hom-Lie algebra $(Sl(n), [,]_{\alpha}, \alpha)$. Indeed, for all $X \in Sl(n)$, we have,

$$tr(\theta(X)) = tr(-X^t) = -tr(X^t) = -tr(X) = 0.$$

That means for all $X \in Sl(n), \theta(X) \in Sl(n)$. Also, for all $X, Y \in Sl(n)$ and for all k in K, we have,

$$\theta(X + kY) = -(X + kY)^t = -X^t + k(-Y^t) = \theta(X) + k\theta(Y).$$

That proves the linearity of θ . Moreover for all $X \in Sl(n)$, we have

$$\theta^2(X) = \theta(\theta(X)) = \theta(-X^t) = -(-X^t)^t = X.$$

That means $\theta^2 \equiv i d_{\mathcal{S}l(n)}$. For all $X \in \mathcal{S}l(n)$, we have

$$\theta(\alpha(X)) = -(A^{-1}XA)^t = -A^t X^t (A^{-1})^t = A^{-1}(-X^t)A = \alpha(\theta(X)).$$

So $\theta(\alpha(X)) = \alpha(\theta(X))$, for all $X \in Sl(n)$. For all $X, Y \in Sl(n)$, we have

$$\begin{split} \theta([X,Y]_{\alpha}) &= \theta(A^{-1}XYA - A^{-1}YXA) \\ &= -(A^{-1}XYA - A^{-1}YXA)^t \\ &= -(A^{-1}XYA)^t + (A^{-1}YXA)^t \\ &= -A^tY^tX^t(A^{-1})^t + A^tX^tY^t(A^{-1})^t \\ &= -A^{-1}Y^tX^tA + A^{-1}X^tY^tA \\ &= -A^{-1}(-Y^t)(-X^t)A + A^{-1}(-X^t)(-Y^t)A \\ &= -A^{-1}\theta(Y)\theta(X)A + A^{-1}\theta(X)\theta(Y)A \\ &= A^{-1}\theta(X)\theta(Y)A - A^{-1}\theta(Y)\theta(X)A \\ &= [\theta(X), \theta(Y)]_{\alpha}. \end{split}$$

So $\theta([X, Y]_{\alpha}) = [\theta(X), \theta(Y)]_{\alpha}$, for all $X, Y \in \mathcal{S}l(n)$. Therefore the map θ is an involution of the Hom-Lie algebra $(\mathcal{S}l(n), [,]_{\alpha}, \alpha)$. By the theorem 3.2, the -1-eigenspace of θ in $\mathcal{S}l(n)$ defined by

$$\mathcal{S}l(n)_{\theta}^{-} = \{X \in \mathcal{S}l(n); \theta(X) = -X\} = \{X \in \mathcal{S}l(n); X^{t} = X\}$$

is a Hom-Lie triple system relative to α^2 and $[,,]_{\alpha}$ where

$$[X, Y, Z]_{\alpha} = [[X, Y]_{\alpha}, \alpha(Z)]_{\alpha}, \text{ for all } X, Y, Z \in \mathcal{S}l(n).$$

The vector space $Sl(n)_{\theta}^{-}$ consists of symmetric matrices X of order n with elements in K such that tr(X) = 0.

References

- [1] A. Baklouti, Quadratic Hom-Lie triple systems, J. Geom. Phys. 121 (2017), 166–175.
- [2] S. Benayadi and A. Makhlouf, Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms, J. Geom. Phys. 76 (2014), 38–60.
- [3] E. Cartan, Oeuvres complètes, Part 1, vol. 2, nos. 101, 138, Paris, Gauthier-Villars, 1952.
- [4] J. T. Hartwig, D. Larsson and S.D. Silvestrov, Deformations of Lie algebras unsing σderivations, J. Algebra. 295 (2006), 314–361.
- [5] T. L. Hodge, Lie triple systems, restricted Lie triple systems and algebraic groups, J. Algebra. 244 (2001), 533–580.
- [6] N. Jacobson, Lie and Jordan triple systems, Amer. J. Math. 71 (1949), 149–170.
- [7] N. Jacobson, General representation theory of Jordan algebras, Trans. Amer. Math. Soc. 70 (1951), 509–548.
- [8] W. G. Lister, A structure theory for Lie triple systems, Trans. Amer. Math. Soc. 72 (1952), 217–242.
- [9] D. Yau, On n-ary Hom-Nambu and Hom-Nambu-Lie algebras, J. Geom. Phys. 62 (2012), 506– 522.
- [10] D. Yau, Hom-algebras and homology, J. Lie Theory. 19 (2009), 409–421.
- [11] J. Zhou, L. Chen and Y. Ma, Generalized derivations of Lie triple systems, Open Math. 14 (2016), 260–271.

Hamdiatou Yara

Department of Mathematics, Thomas Sankara University, Ouagadougou, Burkina Faso

E-mail: yarahamdiatou@yahoo.fr

Patricia L. Zoungrana

Department of Mathematics, Thomas Sankara University, Ouagadougou, Burkina Faso *E-mail*: patibffr@yahoo.fr