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IDENTITIES PRESERVED UNDER EPIS OF PERMUTATIVE

POSEMIGROUPS

Aftab Hussain Shah, Sakeena Bano∗, and Shabir Ahmad Ahanger

Abstract. In 1985, Khan gave some sufficient conditions on semigroup identities
to be preserved under epis of semigroups in conjunction with the general semigroup
permutation identity. But determination of all identities which are preserved under
epis in conjunction with the general permutation identity is an open problem in
the category of all semigroups and hence, in the category of all posemigroups. In
this paper, we first find some sufficient conditions on an identity to be preserved
under epis of posemigroups in conjunction with any nontrivial general permutation
identity. We also find some sufficient conditions on posemigroup identities to be pre-
served under epis of posemigroups in conjunction with the posemigroup permutation
identity, not a general permutation identity.

1. Introduction

The determination of all identities which are preserved under epis in conjunction
with the general permutation identity is an open problem in the category of all semi-
groups and hence, in the category of all posemigroups. However, in ([8], Theorem 4.7)
Khan gave some sufficient conditions on semigroup identities to be preserved under
epis of semigroups in conjunction with the general semigroup permutation identity.
In this paper we are able to generalize the results due to Khan to posemigroups.

Also, in ( [4], Theorem 3.9), Ahanger, Shah, and Khan partially generalized the
results due of Khan ([8], Theorem 4.7) in the category of posemigroups. In this paper
we fully generalize the above results of Khan by relaxing the assumption taken by
Ahanger, Shah, and Khan [4]. We also find some sufficient conditions on posemigroup
identities to be preserved under epis of posemigroups in conjunction with posemigroup
permutation identity, not a general permutation identity.

2. Preliminaries

A partially ordered semigroup, briefly posemigroup is a pair (S,≤) comprising a semi-
group S and a partial order ≤ on S that is compatible with its binary operation, i.e.
for all s1, s2, t1, t2 ∈ S, s1 ≤ t1 and s2 ≤ t2 implies s1s2 ≤ t1t2. We call (U,≤U) a
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subposemigroup of a posemigroup (S,≤S) if U is subsemigroup of the semigroup S
and ≤U=≤S ∩(U × U).

A posemigroup morphism f : (S,≤S)→ (T,≤T ) is a monotone (x ≤S y ⇒ f(x) ≤T

f(y)) semigroup morphism. We shall also denote posemigroups by S, T etc. whenever
no explicit mention of the order relation is required.

A class of posemigroups is called a variety of posemigroups if it is closed under
taking the products (endowed with componentwise operation and order), morphic
images and subposemigroups. It is also possible to discribe posemigroup varieties
alternatively with the help of inequalities using a Birkhoff type characterization; we
refer to [5] for details.

Let S and T be posemigroups and f : S → T be a posemigroup morphism. Then
f is said be an epimorphism (epi) if for any posemigroup W and any posemigroup
morphisms α, β : T → W , α ◦ f = β ◦ f implies α = β. We observe that f : S → T
is necessarily a posemigroup epimorphism if f : S → T is semigroup epimorphism,
where in the latter case we disregard the orders (and hence the monotonocity) and
treat S and T as semigroups.

Let U be a subposemigroup of a posemigroup S and d ∈ S. We say that U domi-
nates d if for all α, β : S → T posemigroup morphisms, such that α(u) = β(u) for all
u ∈ U , one has α(d) = β(d). The set of all elements of S that are dominated by U is

called the posemigroup dominion of U in S and is denoted by D̂om(U, S). One can

easily verify that D̂om(U, S) is a subposemigroup of S containing U .
An identity u = v is said to be preserved under posemigroup epis if for all posemi-

groups U and S with U as a subposemigroup of S such that D̂om(U, S) = S, U
satisfies u = v implies S also satisfies u = v.

The following characterization of posemigroup dominion is provided by Sohail and
Tart called the Zigzag Theorem for posemigeroups and will frequently be used in
whatever follows.

Theorem 2.1. ([9], Theorem 5) Let U be a subposemigroup of a posemigroup S.

Then we have d ∈ D̂om(U, S) if and only if d ∈ U or

d ≤ x1u0, u0 ≤ u1y1

xiu2i−1 ≤ xi+1u2i, u2iyi ≤ u2i+1yi+1, 1 ≤ i ≤ n− 1 (1)

xnu2n−1 ≤ u2n, u2nyn ≤ d

v0 ≤ s1v1, d ≤ v0t1

sjv2j ≤ sj+1v2j+1 v2j−1tj−1 ≤ v2jtj, 1 ≤ j ≤ m− 1 (2)

smv2m ≤ d, v2m−1tm ≤ v2m,

where, u0, v0, . . . u2n, v2m ∈ U ; x1, y1, . . . , xn, yn, s1, t1, . . . , sm, tm ∈ S.

Let us call the above inequalities, posemigroup zigzag inequalities in S over U with
value d and length (n,m) and we say that it is of minimal length (n,m) if n and m
are the least positive integers.

The next theorems are from [1] and are very important for our investigations.



Identities Preserved Under Epis of Permutative Posemigroups 285

Theorem 2.2. ([1], Lemma 3.2) Let d ∈ D̂om(U, S) \U and let (1) and (2) be the
zigzag inequalities for d of minimal length (n,m), then xi, yi ∈ S\U for i = 1, 2, . . . ,m
and sj, tj ∈ S \ U for all j = 1, 2, . . . ,m′.

Theorem 2.3. ([1], Lemma 3.3) For any d ∈ S \ U and for any positive integers
k and k′ there exist u1, u2, . . . , uk, v1, v2, . . . , vk′ ∈ U and dk, dk′ ∈ S \ U such that
d = u1u2 · · ·ukdk = dk′vk′vk′−1 · · · v2v1.

Theorem 2.4. ([4], Theorem 2.1) If U is a permutative posemigroup and S is any

posemigroup containing U properly as a subposemigroup such that D̂om(U, S) = S.
Then S is also permutative.

Bracketed statements whenever used shall mean the dual to the other statements.

3. Main Results

A semigroup S is said to be permutative if S satisfies a permutation identity.

z1z2 · · · zn = zi1zi2 · · · zin (n ≥ 2), (3)

where i is any non-trivial permutation of the set {1, 2, . . . , n}. A posemigroup S is
said to be permutative if it is so as a semigroup.

In order to prove the main theorems of this section we first prove the following.

Lemma 3.1. ([4], Lemma 3.2) Let S be any posemigroup satisfying (3) with n ≥ 3,
the following hold:

(i) For each j ∈ {2, 3, . . . , n} such that zj−1zj is not a subword of zi1zi2 · · ·
zin , S satisfies the permutation identity

z1z2 · · · zj−1xyzj · · · zn = z1z2 · · · zj−1yxzj · · · zn.

(ii) If zin 6= zn, then S also satisfies the permutation identity

z1z2 · · · znxy = z1z2 · · · znyx.

Lemma 3.2. Let S be any permutative posemigroup satisfying a permutation iden-
tity (3) with n ≥ 3. Then for each j ∈ {2, 3, . . . , n} such that zj−1zj is not a subword
of zi1zi2 · · · zin , for all r ≥ j − 1, s ≥ n− j + 1 and for all u ∈ Sr, v ∈ Ss we have

ux1x2v = ux2x1v, for all x1, x2 ∈ S.

In particular Sk is medial for all k ≥ max(j − 1, n− j + 1).

Proof. The proof follows from ( [7], Proposition 6.3).

The next lemma easily follows from Lemma 3.2.

Lemma 3.3. Let S be any permutative posemigroup satisfying a permutation iden-
tity (3) with n ≥ 3. If j ∈ {2, 3, . . . , n} such that zj−1zj is not a subword of
zi1zi2 · · · zin . Then for all r ≥ j − 1, s ≥ n − j + 1 and for all u ∈ Sr, v ∈ Ss,
we have

uz1z2 · · · zlv = uzh1zh2 · · · zhl
v,

for all z1, z2, . . . , zl ∈ S (l ≥ 2), where h is any permutation of the set {1, 2, . . . , l}.
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Lemma 3.4. Let S be any permutative posemigroup satisfying a permutation
identity (3) with n ≥ 3. If j ∈ {2, 3, . . . , n} such that zj−1zj is not a subword of
zi1zi2 · · · zin . Then for all r ≥ j − 1, s ≥ n − j + 1 and for all x ∈ Sr, z ∈ Ss and
y ∈ S, (xyz)k = xkykzk for all k ≥ 1.

Proof. For k = 1, the result is vacuously true. We shall prove it for k > 1. Now

(xyz)k = (xyz)(xyz)k−2(xyz)

= xyzxk−2yk−2zk−2xyz (by Lemma 3.3 as x ∈ Sr, z ∈ Ss)

= xkykzk (by Lemma 3.3 as x ∈ Sr, z ∈ Ss).

In the following results, let U and S be any posemigroups with U as a proper sub-

posemigroup of S such that U satisfies (3) and D̂om(U, S) = S.

Lemma 3.5. ([2], Lemma 3.3) For any z1, z2 ∈ S and x, y ∈ S \U , xz1z2y = xz2z1y.

Corollary 3.6. For any x, y ∈ S \ U , z1, z2, . . . , zk ∈ S and for any permutation
j of the set {1, 2, . . . , k}, we have

xz1z2 · · · zky = xzj1zj2 · · · zjky.

Lemma 3.7. If in 6= n in (3), then xz1z2 = xz2z1 for all z1, z2 ∈ S and x ∈ S \ U .

Proof. Since S is permutative, by Lemma 3.1 (ii), S also satisfies the following
permutation identity:

z1z2 · · · znst = z1z2 · · · znts.
By Theorem 2.3, for any x ∈ S \U and for every integer k, we have x ∈ Sk. Therefore
the proof of the lemma follows.

Corollary 3.8. If in 6= n in (3), then for any z1, z2, . . . , zk ∈ S, x ∈ S \ U and
for any permutation j of the set {1, 2, . . . , k}, we have

xz1z2 · · · zk = xzj1zj2 · · · zjk .

Proposition 3.9. Let U be any permutative posemigroup satisfying permutation
identity (3) and let S be any posemigroup with U as a proper subposemigroup of S

such that D̂om(U, S) = S. Then for any d ∈ S \ U there exist z ∈ U r, w ∈ U s and
x ∈ S \ U with r ≥ j − 1, s ≥ n− j + 1 such that dk = zkxkwk for all k ≥ 1.

Proof. Suppose that U satisfies permutation identity (3). By Theorem 2.4, S also
satisfies permutation identity (3). Let d ∈ S \ U . By Theorems 2.2 and 2.3 together
we can write d = zxw for some z ∈ U r, w ∈ U s and x ∈ S \ U . Now for k ≥ 1, we
have

dk = (zxw)k

= zkxkwk (by Lemma 3.4 as z ∈ U r, w ∈ U s).

Theorem 3.10. Non-trivial identities I of the following forms are preserved under
epis of posemigroups in conjunction with permutation identity (3):

(i) at least one side of I has no repeated variable;
(ii) zp1 = zq2, p, q > 0;
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(iii) zp1z
p
2 · · · z

p
l = zq1z

q
2 · · · z

q
l , p, q > 0, l ≥ 1;

(iv) zp1 = 0, p > 0.

Proof. Take any posemigroups U and S with U as a proper subposemigroup of S
such that Dom(U, S) = S. Suppose that U satisfies the permutation identity (3) and
any non-trivial identity I. Then by Theorem 2.4, S also satisfies the permutation
identity (3). We will show that S satisfies each of the identities (i) to (iv).

(i) Assume U satisfies (i), then by ( [3], Theorem 3.1), S also satisfies (i).

(ii) Assume U satisfies (ii). In order to prove that S satisfies (ii), we first prove the
following lemma.

Lemma 3.11. For any y ∈ S \ U and u ∈ U , yp = yq = up(= uq).

Proof. Since y ∈ S \U . Then by Proposition 3.9, yp = zpxpwp for some z ∈ U r, w ∈
U s and x ∈ S \ U . Let (1) and (2) be the zigzag inequalities for x of minimal length
(n,m). Now

yp = zp(x1u0)
pwp (by zigzag inequalities (1))

= zpxp1u
p
0w

p (by Lemma 3.3)

= zpxp1u
p
1w

p (as U satisfies (ii))

= zp(x1u1)
pwp (by Lemma 3.3)

≤ zp(x2u2)
pwp (by zigzag inequalities (1))

= zpxp2u
p
2w

p (by Lemma 3.3)

= zpxp2u
p
3w

p (as U satisfies (ii))

...

= zpxpnu
p
2n−1w

p

= zp(xnu2n−1)
pwp (by Lemma 3.3)

= zpup2nw
p

= (zu2nw)p (by Lemma 3.3)

= up (as U satisfies (ii)). (4)

On similar lines for any y ∈ S \ U and u ∈ U , we can get

yq ≥ uq. (5)

On combining (4) and (5), we get yp ≤ up = uq ≤ yq. Similarly, we can show that
yp ≥ up = uq ≥ yq. Therefor, yp = yq = up(= uq), as required.

Now to complete the proof of (ii), take any z1, z2 ∈ S. If z1 ∈ S \ U and z2 ∈ U ,
then the result follows by Lemma 3.11. Assume that z1, z2 ∈ S \ U . Now

zp1 = up (where u ∈ U , by Lemma 3.11 as z1 ∈ S \ U)

= uq (as U satisfies (ii))

= zq2 (by Lemma 3.11 as z2 ∈ S \ U),

as required. This completes the proof of (ii).
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(iii) Assume U satisfies (iii). For j = 1, 2, . . . , l, let zp1z
p
2 · · · z

p
j be the word in S of

length jp. To prove that S satisfies (iii), we use induction on j by assuming that
the remaining element zj+1, . . . , zl ∈ U . For j = 0, the equation (iii) is vacuously
satisfied. Assume inductively that the equation (iii) is true for all z1, z2, . . . , zj−1 ∈ S
and for all zj, zj+1, . . . , zl ∈ U . We will prove that this assumption also holds for all
z1, z2, . . . , zj ∈ S and for all zj+1, · · · , zl ∈ U . There is no need to consider the case
zj ∈ U . So, assume that zj ∈ S \ U , then by Proposition 3.9,

zpj = zpxpwp (6)

for some z ∈ U r, w ∈ U s and x ∈ S \ U . Let (1) and (2) be the zigzag inequalities
for x of minimal length (n,m). For each k = 1, 2, . . . ,m − 1, Theorems 2.2 and 2.3

together allow us to write sk = s′kb
(k)
1 b

(k)
2 · · · b

(k)
j−2 and tk = c

(k)
j+1c

(k)
j+1 · · · c

(k)
l t′k, where

b
(k)
1 , b

(k)
2 , . . . , b

(k)
j−2, c

(k)
j+1, c

(k)
j+1, . . . , c

(k)
l ∈ U and x′k, y

′
k ∈ S \ U .

For each k = 1, 2, . . . ,m−1, in whatever follows, we shall be using phrases expand-

ing tk, expanding sk and collapsing t′k, collapsing s
′
k to mean that tk = c

(k)
j+1 · · · c

(k)
l t′k,

sk = s′kb
(k)
1 b

(k)
2 · · · b

(k)
j−2 and c

(k)
j+1 · · · c

(k)
l t′k = tk, s′kx

′
kb

(k)
1 b

(k)
2 · · · b

(k)
j−2

= sk, respectively.
For each k = 1, 2, . . . ,m− 1, consider the product

Pk =: zq1z
q
2 · · · z

q
j−1z

qs′qk b
(k)p

1 b
(k)p

2 · · · b(k)
p

j−1(v2k−1tk)pwpzpj+1 · · · z
p
l .

Lemma 3.12. For k = 1, 2, . . . ,m− 1, Pk ≤ Pk+1 and Pm−1 ≤ zq1z
q
2 · · · z

q
l .

Proof. Assume that 1 ≤ j ≤ l. We essentially prove the lemma when 1 < j < l.
The proof in the cases when j = l and j = l follows by slight modification (see Remark
3.14). Now

Pk = zq1z
q
2 · · · z

q
j−1z

qs′qk b
(k)p

1 b
(k)p

2 · · · b(k)
p

j−1(v2k−1tk)pwpzpj+1 · · · z
p
l

≤ zq1z
q
2 · · · z

q
j−1z

qs′qk b
(k)p

1 · · · b(k)
p

j−1(v2ktk+1)
pwpzpj+1 · · · z

p
l

(by zigzag inequalities (2))

= w1s
′q
k b

(k)p

1 b · · · b(k)
p

j−1(v2ktk+1)
pw2

(where w1 = zq1z
q
2 · · · z

q
j−1z

q, w2 = wpzpj+1 · · · z
p
l )

= w1s
′q
k b

(k)p

1 · · · b(k)
p

j−1v
p
2kc

(k+1)p

j+1 · · · c(k+1)p

l t′pk+1w2

(by expanding tk+1 and Corollary 3.6 as s′k, t
′
k+1 ∈ S \ U)

= w1s
′q
k b

(k)q

1 · · · b(k)
q

j−1v
q
2kc

(k+1)q

j+1 · · · c(k+1)q

l t′pk+1w2 (as U satisfies (iii))

= w1s
q
kv

q
2kc

(k+1)q

j+1 · · · c(k+1)q

l t′pk+1w2 (by collapsing s′k and

Corollary 3.6 as s′k, t
′
k+1 ∈ S \ U)

= w1(skv2k)qc
(k+1)q

j+1 · · · c(k+1)q

l t′pk+1w2 (by Corollary 3.6 as sk, t
′
k+1 ∈ S \ U)

≤ w1(sk+1v2k+1)
qc

(k+1)q

j+1 · · · c(k+1)q

l t′pk+1w2 (by zigzag inequalities (2))

= w1s
q
k+1v

q
2k+1c

(k+1)q

j+1 · · · c(k+1)q

l t′pk+1w2

(by Corollary 3.6 as sk+1, t
′
k+1 ∈ S \ U)

= w1s
′q
k+1b

(k+1)q

1 · · · b(k+1)q

j−1 vq2k+1c
(k+1)q

j+1 · · · c(k+1)q

l t′pk+1w2
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(by expanding s′k+1 and Corollary 3.6 as sk+1, t
′
k+1 ∈ S \ U)

= w1s
′q
k+1b

(k+1)p

1 · · · b(k+1)p

j−1 vp2k+1c
(k+1)p

j+1 · · · c(k+1)p

l t′pk+1w2 (as U satisfies (iii))

= w1s
′q
k+1b

(k+1)p

1 · · · b(k+1)p

j−1 vp2k+1t
p
k+1w2 (by collapsing t′k+1 and

Corollary 3.6 as s′k+1, t
′
k+1 ∈ S \ U)

= w1s
′q
k+1b

(k+1)p

1 · · · b(k+1)p

j−1 (v2k+1tk+1)
pw2

(by Corollary 3.6 as s′k+1, tk+1 ∈ S \ U)

= zq1z
q
2 · · · z

q
j−1z

qs′qk+1b
(k+1)p

1 · · · b(k+1)p

j−1 (v2k+1tk+1)
pwpzpj+1 · · · z

p
l

(since w1 = zq1z
q
2 · · · z

q
j−1z

q, w2 = wpzpj+1 · · · z
p
l )

= Pk+1.

In particular it shows that

Pm−1 ≤ w1s
′q
mb

(m)p

1 · · · b(m)p

j−1 v
p
2m−1t

p
mw2

= w1s
′q
mb

(m)p

1 · · · b(m)p

j−1 (v2m−1tm)pw2

(by Corollary 3.6 as s′m, tm ∈ S \ U)

≤ w1s
′q
mb

(m)p

1 · · · b(m)p

j−1 v
p
2mw2 (by zigzag inequalities (2))

= zq1z
q
2 · · · z

q
j−1z

qs′qmb
(m)p

1 · · · b(m)p

j−1 v
p
2mw

pzpj+1 · · · z
p
l

= zq1z
q
2 · · · z

q
j−1z

qs′qmb
(m)p

1 · · · b(m)p

j−1 (v2mw)pzpj+1 · · · z
p
l

(by Lemma 3.3, as z ∈ U r and w ∈ U s)

= zq1z
q
2 · · · z

q
j−1z

qs′qmb
(m)q

1 · · · b(m)q

j−1 (v2mw)qzqj+1 · · · z
q
l

(as U satisfies (iii))

= zq1z
q
2 · · · z

q
j−1z

qsqmv
q
2mw

qzqj+1 · · · z
q
l (by collapsing s′m and

Lemma 3.3, as z ∈ U r and w ∈ U s)

= zq1z
q
2 · · · z

q
j−1z

q(smv2m)qwqzqj+1 · · · z
q
l

(by Lemma 3.3, as z ∈ U r and w ∈ U s)

≤ zq1z
q
2 · · · z

q
j−1z

qxqwqzqj+1 · · · z
q
l (by zigzag inequalities (2))

= zq1z
q
2 · · · z

q
j z

q
j+1 · · · z

q
l ,

as required.

Lemma 3.13.
zp1z

p
2 · · · z

p
l ≤ P1.

Proof.

zp1z
p
2 · · · zq · · · z

p
l = zp1z

p
2 · · · z

p
j−1z

pxpwpzpj+1 · · · z
p
l (by equation (6))

≤ zp1z
p
2 · · · z

p
j−1z

p(v0t1)
pwpzpj+1 · · · z

p
l (by zigzag inequalities (2))

= zp1z
p
2 · · · z

p
j−1z

pvp0c
(1)p

j+1 · · · c
(1)p

l t′p1 w
pzpj+1 · · · z

p
l

(by expanding t1 and Lemma 3.3, as z ∈ U r and w ∈ U s)

= zp1z
p
2 · · · z

p
j−1z

p(v0c
(1)
j+1)

pc
(1)p

j+2 · · · c
(1)p

l t′p1 w
pzpj+1 · · · z

p
l

(by Lemma 3.3, as z ∈ U r and w ∈ U s)
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= zq1z
q
2 · · · z

q
j−1z

q(v0c
(1)
j+1)

qc
(1)q

j+2 · · · c
(1)q

l t′p1 w
pzpj+1 · · · z

p
l

(as U satisfies (iii))

= zq1z
q
2 · · · z

q
j−1z

qvq0c
(1)q

j+1c
(1)q

j+2 · · · c
(1)q

l t′p1 w
pzpj+1 · · · z

p
l

(by Lemma 3.3, as z ∈ U r and w ∈ U s)

≤ zq1z
q
2 · · · z

q
j−1z

q(s1v1)
qc

(1)q

j+1c
(1)q

j+2 · · · c
(1)q

l t′p1 w
pzpj+1 · · · z

p
l

(by zigzag inequalities (2))

= zq1z
q
2 · · · z

q
j−1z

qsq1v
q
1c

(1)q

j+1 · · · c
(1)q

l t′p1 w
pzpj+1 · · · z

p
l

(by Corollary 3.6 as s1, t
′
1 ∈ S \ U)

= zq1z
q
2 · · · z

q
j−1z

qs′q1 b
(1)q

1 · · · b(1)
q

j−1v
q
1c

(1)q

j+1 · · · c
(1)q

l t′p1 w
pzpj+1 · · · z

p
l

(by expanding s1 and Corollary 3.6 as s′1, t
′
1 ∈ S \ U)

= zq1z
q
2 · · · z

q
j−1z

qs′q1 b
(1)p

1 · · · b(1)
p

j−1v
p
1c

(1)p

j+1 · · · c
(1)p

l t′p1 w
pzpj+1 · · · z

p
l

(as U satisfies (iii))

= P1,

as required.

Now, by Lemmas 3.12 and 3.13, we have

zp1z
p
2 · · · z

p
l ≤ P1 ≤ · · ·Pm−1 ≤ zq1z

q
2 · · · z

q
l .

Similarly, we can show that zp1z
p
2 · · · z

p
l ≥ zq1z

q
2 · · · z

q
l . Therefore zp1z

p
2 · · · z

p
l = zq1z

q
2 · · · z

q
l ,

as required.

Remark 3.14. The proof when j = l or j = 1 is obtained by making the following
conventions:

(i) the word zq1z
q
2 · · · z

q
j−1 = 1,

(ii) the word b
(i)p

1 · · · b(i)
p

j−1 = 1 = b
(i)q

1 · · · b(i)
q

j−1 and s′i = si for i = 1, 2, . . . ,m.

Dually when j = 1,

(i) the word zpj+1 · · · z
p
l = 1,

(ii) the word c
(i)p

j+1 · · · c
(i)p

l = 1 = c
(i)q

j+1 · · · c
(i)q

l and t′i = ti for i = 1, 2, . . . ,m.

(iv) Assume U satisfies (iv). Let z1 ∈ S \U , then by Proposition 3.9, zp1 = zpxpwp for
some z ∈ U r, w ∈ U s and x ∈ S \ U . Let (1) and (2) be the zigzag inequalities for x
of minimal length (n,m). Now

zp1 ≤ zp(v0t1)
pwp (by zigzag inequalities (2))

= zpvp0t
p
1w

p (by Lemma 3.3 as z ∈ U r and w ∈ U s)

= zpvp1t
p
1w

p (as U satisfies (iv))

= zp(v1t1)
pwp (by Lemma 3.3 as z ∈ U r and w ∈ U s)

≤ zp(v2t2)
pwp (by zigzag inequalities (2))

= zpvp2t
p
2w

p (by Lemma 3.3 as z ∈ U r and w ∈ U s)

= zpvp3t
p
2w

p (as U satisfies (iv))

...
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= zpvp2m−1t
p
mw

p

= zp(v2m−1tm)pwp (by Lemma 3.3 as z ∈ U r and w ∈ U s)

≤ zpvp2mw
p (by zigzag inequalities (2))

= (zv2mw)p (by Lemma 3.3 as z ∈ U r and w ∈ U s)

= 0 (as U satisfies (iv)).

Thus zp1 ≤ 0. Similarly, we can show that zp1 ≥ 0. Hence zp1 = 0, as required. This
completes proof of the Theorem 3.10.

In the following results U is any proper subposemigroup of a posemigroup S satisfying

(3), such that D̂om(U, S) = S.

Lemma 3.15. ([4], Lemma 3.4) If in 6= n and i2 6= 2 then for any z1, z3 ∈ U and
z2 ∈ S \ U , z1z2z3 = z1z3z2.

Corollary 3.16. If in 6= n and i2 6= 2 in (3), then for any z1, z2, . . . , zk ∈ S
such that zq ∈ S \ U for some q ∈ {2, 3, . . . , k} and for any permutation j of the set
{2, 3, . . . , k}. We have

z1z2 · · · zk = z1zj2zj3 · · · zjk .
Proof. We have,

z1z2 · · · zq · · · zk = z1zqz2 · · · zq−1zq+1 · · · zk (by Lemma 3.15 as zq ∈ S \ U)

= z1zqzj2 · · · zjl−1
zjl+1
· · · zjk (where zq = zjl , by Corollary 3.8)

= z1zj2 · · · zjl−1
zqzjl+1

· · · zjk (by Lemma 3.15 as zq ∈ S \ U)

= z1zj2zj3 · · · zjk ,
as required.

Lemma 3.17. If in 6= n and i2 6= 2 in (3), then for all z1 ∈ U and z2 ∈ S \ U ,
(z1z2)

k = zk1z
k
2 for all positive integers k.

Proof. For k = 1, the result is vacously true. Assume k > 1, we have

(z1z2)
k = z1z2(z1z2)

k−1

= z1z2z
k−1
1 zk−12 (by Corollary 3.8, as z2 ∈ S \ U

= zk1z
k
2 (by Corollary 3.16, as in 6= n and i2 6= 2 and z2 ∈ S \ U.

Lemma 3.18. If in 6= n in (3), then for all z1 ∈ S \ U and z2 ∈ U , (z1z2)
k = zk1z

k
2

for all positive integers k.

Proof. For k = 1, the result is vacously true. Assume k > 1, we have

(z1z2)
k = z1z2(z1z2)

k−1

= z1z2z
k−1
1 zk−12 (by Corollary 3.8, as in 6= n and z1 ∈ S \ U

= zk1z
k
2 (by Corollary 3.8, as in 6= n and z1 ∈ S \ U.

Theorem 3.19. A nontrivial identity I is preserved under the epis of posemigroups
in conjunction with the permutation identity (3), with in 6= n and i2 6= 2 [i1 6= 1 and
in−1 6= n− 1] if I has one of the following forms:



292 A. H. Shah, Sakeena Bano, and S. A. Ahanger

(i) zp1z
q
2 = zr2z

s
1, p, q, r, s > 0;

(ii) zp1z
q
2 = 0, p, q > 0.

Proof. Let U and S be any posemigroups with U as a proper subposemigroup of

S such that D̂om(U, S) = S. Assume that U satisfies (3) with in 6= n and i2 6= 2 and
any nontrivial identity I. By Theorem 2.4, S also satisfies permutation identity (3).
We will show that S also satisfies the identities (i) and (ii).

(i) Assume U satisfies (i) and let z1, z2 ∈ S. We consider the following cases.

Case a: z1 ∈ S \ U and z2 ∈ U . Let (1) and (2) be the zigzag inequalities for z1 of
minimal length (n,m). Now, we prove inductively that

zp1z
p
2 ≤ xpkz

r
2(u2k−1yk)s (7)

holds for all k = 1, 2, . . . , n− 1. For k = 1, we have

zp1z
q
2 ≤ (x1u0)

pzq2 (by zigzag inequalities (1)

= xp1u
p
0z

q
2 (by Lemma 3.18, as x1 ∈ S \ U)

= xp1z
r
2u

s
0 (since U satisfies (i))

≤ xp1z
r
2(u1y1)

s (by zigzag inequalities (1)).

Thus (7) holds for k = 1. Assume inductively that it holds for k = l < n− 1. We will
show that it also holds for k = l + 1. Now

zp1z
q
2 ≤ xpl z

r
2(u2l−1yl)

s (by inductive hypothesis)

= xpl z
r
2u

s
2l−1y

s
l (by Corollary 3.6, as xl, yl ∈ S \ U)

= xpl u
p
2l−1z

q
2y

s
l (as U satisfies (i))

= (xlu2l−1)
pzq2y

s
l (by Corollary 3.6, as xl, yl ∈ S \ U)

≤ (xl+1u2l)
pzq2y

s
l (by zigzag inequalities (1))

= xpl+1u
p
2lz

q
2y

s
l (by Corollary 3.6, as xl+1, yl ∈ S \ U)

= xpl+1z
r
2u

s
2ly

s
l (as U satisfies (i))

= xpl+1z
r
2(u2lyl)

s (by Corollary 3.6, as xl+1, yl ∈ S \ U)

≤ xpl+1z
r
2(u2l+1yl+1)

s (by zigzag inequalities (1)),

as required.
Now to complete the proof of Case a, letting k = n− 1 in (7), we have

zp1z
q
2 ≤ xpnz

r
2(u2n−1yn)s

= xpnz
r
2u

s
2n−1y

s
n (by Corollary 3.6, as xn, yn ∈ S \ U)

= xpnu
p
2n−1z

q
2y

s
n (as U satisfies (i))

= (xnu2n−1)
pzq2y

s
n (by Corollary 3.6, as xn, yn ∈ S \ U)

≤ (u2n)pzq2y
s
n (by zigzag inequalities (1))

= zr2u
s
2ny

s
n (as U satisfies (i))

= zr2(u2nyn)s (by Lemma 3.17 as yn ∈ S \ U)

≤ zr2z
s
1 (by zigzag inequalities (1)).

Thus zp1z
q
2 ≤ zr2z

s
1. Similarly, we can show that zp1z

q
2 ≥ zr2z

s
1. Hence, zp1z

q
2 = zr2z

s
1 as

required.
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Case b: z2 ∈ S \ U and z1 ∈ U . Let (1) and (2) be the zigzag inequalities for z2 of
minimal length (n,m). Now, we prove inductively that

zp1z
q
2 ≤ (skv2k−1)

rzs1t
q
k (8)

holds for all k = 1, 2, . . . ,m− 1. For k = 1, we have

zp1z
q
2 ≤ zp1(v0t1)

q (by zigzag inequalities (2))

= zp1v
q
0t

q
1 (by Lemma 3.17 as t1 ∈ S \ U)

= vr0z
s
1t

q
1 (since U satisfies (i))

≤ (s1v1)
rzs1t

q
1 (by zigzag inequalities (2))

Thus (8) holds for k = 1. Assume inductively that it holds for k = l < m − 1. We
will show that it also holds for k = l + 1. Now

zp1z
q
2 ≤ (slv2l−1)

rzs1t
q
l (by inductive hypothesis)

= srl v
r
2l−1z

s
1t

q
l (by Corollary 3.6, as sl, tl ∈ S \ U)

= srl z
p
1v

q
2l−1t

q
l (since U satisfies (i))

= srl z
p
1(v2l−1tl)

q (by Corollary 3.6, as sl, tl ∈ S \ U)

= srl z
p
1(v2ltl+1)

q (by zigzag inequalities (2))

= srl z
p
1v

q
2lt

q
l+1 (by Corollary 3.6, as sl, tl+1 ∈ S \ U)

= srl v
r
2lz

s
1t

q
l+1 (since U satisfies (i))

= (slv2l)
rzs1t

q
l+1 (by Corollary 3.6, as sl, tl+1 ∈ S \ U)

= (sl+1v2l+1)
rzs1t

q
l+1 (by zigzag inequalities (2)),

as required.
Now to complete the proof of Case b, letting k = m− 1 in (8), we have

zp1z
q
2 ≤ (smv2m−1)

rzs1t
q
m

= srmv
r
2m−1z

s
1t

q
m (by Corollary 3.6, as sm, tm ∈ S \ U)

= srmz
p
1v

q
2m−1t

q
m (since U satisfies (i))

= srmz
p
1(v2m−1tm)q (by Corollary 3.6, as sm, tm ∈ S \ U)

≤ srmz
p
1v

q
2m (by zigzag inequalities (2))

= srmv
r
2mz

s
1 (since U satisfies (i))

= (smv2m)rzs1 (by Lemma 3.18, as sm ∈ S \ U)

≤ zr2z
s
1 (by zigzag inequalities (2)).

Thus zp1z
q
2 ≤ zr2z

s
1. Similarly, we can show that zp1z

q
2 ≥ zr2z

s
1. Hence zp1z

q
2 = zr2z

s
1, as

required.

Case c: z1, z2 ∈ S \U and let (1) and (2) be the zigzag inequalities for z1 of minimal
length (n,m). Then

zp1z
q
2 ≤ (x1u0)

pzq2 (by zigzag inequalities (1)

= xp1u
p
0z

q
2 (by Lemma 3.18)

= xp1z
r
2u

s
0 (by Case b)
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≤ xp1z
r
2(u1y1)

s (by zigzag inequalities (1))

= xp1z
r
2u

s
1y

s
1 (by Corollary 3.6, as x1, y1 ∈ S \ U)

= xp1u
p
1z

q
2y

s
1 (by Case b)

= (x1u1)
pzq2y

s
1 (by Corollary 3.6, as x1, y1 ∈ S \ U)

≤ (x2u2)
pzq2y

s
1 (by zigzag inequalities (1))

= xp2u
p
2z

q
2y

s
1 (by Corollary 3.6, as x2, y1 ∈ S \ U)

= xp2z
r
2u

s
2y

s
1 (by Case b)

= xp2z
r
2(u2y1)

s (by Corollary 3.6, as x2, y1 ∈ S \ U)

≤ xp2z
r
2(u3y2)

s (by zigzag inequalities (1))

...

≤ xpnz
r
2(u2n−1yn)s

= xpnz
r
2u

s
2n−1y

s
n (by Corollary 3.6, as xn, yn ∈ S \ U)

= xpnu
p
2n−1z

q
2y

s
n (by Case b)

= (xnu2n−1)
pzq2y

s
n (by Corollary 3.6, as xn, yn ∈ S \ U)

≤ up2nz
q
2y

s
n (by zigzag inequalities (1))

= zr2u
s
2ny

s
n (by Case b)

= zr2(u2nyn)s (by Lemma 3.17)

≤ zr2z
s
1 (by zigzag inequalities (1)).

Thus zp1z
q
2 ≤ zr2z

s
1. Similarly, we can show that zp1z

q
2 ≥ zr2z

s
1. Hence zp1z

q
2 = zr2z

s
1, as

required. This completes the proof of part (i).

(ii) Assume U satisfies (ii), then for all u, v ∈ U , upvq = 0. Let z1, z2 ∈ S. Then we
have the folowing cases.

Case a: z1 ∈ U , z2 ∈ S \ U . Let (1) and (2) be the zigzag inequalities for z2 of
minimal length (n,m). Then

zp1z
q
2 ≤ zp1(v0t1)

q (by zigzag inequalities (2))

= zp1v
q
0t

q
1 (by Lemma 3.17 as t1 ∈ S \ U)

= zp1v
q
1t

q
1 (since U satisfies (ii))

= zp1(v1t1)
q (by Lemma 3.17 as t1 ∈ S \ U)

≤ zp1(v2t2)
q (by zigzag inequalities (2))

= zp1v
q
2t

q
2 (by Lemma 3.17 as t2 ∈ S \ U)

= zp1v
q
3t

q
2 (since U satisfies (ii))

...

= zp1v
q
2m−1t

q
m

= zp1(v2m−1tm)q (by Lemma 3.17 as tm ∈ S \ U)

≤ zp1v
p
2m (by zigzag inequalities (2))

= 0 (since U satisfies (ii)).
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Thus zp1z
q
2 ≤ 0. Similarly, we can show that zp1z

q
2 ≥ 0. Hence zp1z

q
2 = 0, as required.

Case b: z1 ∈ S \ U , z2 ∈ U . It follows on similar lines as Case a, by applying zigzag
inequalities (1) and Lemma 3.18.

Case c: z1, z2 ∈ S \ U and let (1)and (2) be the zigzag inequalities for z1 of minimal
length (n,m). Then

zp1z
q
2 ≤ (x1u0)

pzq2 (by zigzag inequalities (2))

= xp1u
p
0z

q
2 (by Lemma 3.18 as x1 ∈ S \ U)

= xp1u
p
1z

q
2 (by Case a)

= (x1u1)
pzq2 (by Lemma 3.18 as x1 ∈ S \ U)

≤ (x2u2)
pzq2 (by zigzag inequalities (1))

= xp2u
p
2z

q
2 (by Lemma 3.18 as x2 ∈ S \ U)

= xp2u
p
3z

q
2 (by Case a)

...

= xpnu
p
2n−1z

q
2

= (xmu2n−1)
pzq2 (by Lemma 3.18 as xm ∈ S \ U)

≤ up2nz
q
2 (by zigzag inequalities (1))

= 0 (by Case a).

Thus zp1z
q
2 ≤ 0. Similarly, we can show that zp1z

q
2 ≥ 0. Hence zp1z

q
2 = 0, as required.

This completes proof of the Theorem 3.19.
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