ON THE LOWER LAYERS OF A \mathbb{Z}_{p}-EXTENSION

Jangheon Oh

Abstract

It is shown that the p-part of the class number of the lower layers of a cyclotomic \mathbb{Z}_{p}-extension can grow exponentially.

1. Introduction

Fix a prime number p and let k be a number field. Suppose that K is a \mathbb{Z}_{p}-extension of k, so $K=\cup_{n \geq 0} k_{n}$ with $k_{n} \subset k_{n+1}$ and $\operatorname{Gal}\left(k_{n} / k\right) \simeq \mathbb{Z} / p^{n} \mathbb{Z}$. Denote by L_{n} the p Hilbert class field of the n-th layer k_{n}, A_{n} the galois group $\operatorname{Gal}\left(L_{n} / k_{n}\right)$, and write $L_{K}=\cup_{n \geq 0} L_{n}$. Iwasawa theory [1] shows that there exists integers $\mu \geq 0, \lambda \geq 0, \nu$ such that for sufficiently large n, one has

$$
h_{n}:=\left|A_{n}\right|=p^{\mu p^{n}+\lambda n+\nu}
$$

It is well-known that μ-invariant vanishes when K is a cyclotomic \mathbb{Z}_{p}-extension of an abelian number field k. It implies that the exponent of h_{n} grows linearly for higher layers. In this paper, we prove that h_{n} can grow exponentially in lower layers of a cyclotomic \mathbb{Z}_{p}-extension and give an example of it.

2. Proof of Theorems

Let

$$
Y_{K}=\operatorname{Gal}\left(L_{K} / K\right) .
$$

By Nakayama lemma, one can show that Y_{K} is a finitely generated torsion $\Lambda=$ $\mathbb{Z}_{p}[[\operatorname{Gal}(K / k)]]$-module. The Iwasawa algebra Λ is isomorphic to the ring of the formal power series $\mathbb{Z}_{p}[[T]]$ in one variable over \mathbb{Z}_{p}. The isomorphism is given by identifying $1+T$ with a topological generator γ of $\operatorname{Gal}(K / k)$. A polynomial $P(T) \in \mathbb{Z}_{p}[T]$ is called distinguished if $P(T)=T^{n}+a_{n-1} T^{n-1}+\cdots+a_{0}$ with $p \mid a_{i}$ for $0 \leq i \leq n-1$. By the p-adic Weierstrass preparation theorem, every element $g(T)$ in $\mathbb{Z}_{p}[[T]]$ may be uniquely written in the form

$$
g(T)=p^{m} U(T) P(T),
$$

where m is a non-negative integer, $U(T)$ is a unit, and $P(T)$ is a distinguished polynomial.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

Theorem 2.1. Suppose K / k is a \mathbb{Z}_{p}-extension in which exactly one prime ramfies and totally ramifies in K / k. Then

$$
\operatorname{Gal}\left(L_{n} / k_{n}\right) \simeq Y_{K} /\left((1+T)^{p^{n}}-1\right) Y_{K} .
$$

Proof See [4].
Theorem 2.2. Let K be a \mathbb{Z}_{p}-extension of k with $\mu=0$. Suppose that $h_{0}=p$ and exactly one prime ramfies and totally ramifies in K / k. Then

$$
h_{n}=p^{p^{n}} \text { for } n \text { satisfying } p^{n} \leq \lambda
$$

Proof Since only one prime ramfies and totally ramifies in K / k and $\operatorname{Gal}\left(L_{0} / k_{0}\right)$ is cyclic, we see that Y_{K} is a cyclic Λ-module by Theorem 2.1 and Nakayama lemma. Moreover μ is zero, hence

$$
Y_{K} \simeq \mathbb{Z}_{p}[[T]] /(P(T))
$$

By Theorem 2.1 and the condition in Theorem 2.2, we have

$$
\mathbb{Z} / p \mathbb{Z} \simeq A_{0} \simeq Y_{K} / T Y_{K} \simeq Z_{p}[[T]] /(P(T), T)
$$

Hence we may assume

$$
P(0)=p .
$$

For n satisfying $p^{n} \leq \lambda$,

$$
\begin{aligned}
P(T)- & \left((1+T)^{p^{n}}-1\right) T^{\lambda-p^{n}}=P(T)-T^{\lambda}+p T G(T) \\
& =p+b_{1} T+\cdots+b_{\lambda-1} T^{\lambda-1}=p U(T),
\end{aligned}
$$

where $p \mid b_{i}$ for $1 \leq i \leq \lambda-1, G(T) \in \mathbb{Z}_{p}[T]$ and $U(T)$ is a unit in $\mathbb{Z}_{p}[T]$. Therefore we have

$$
\begin{gathered}
A_{n} \simeq Y_{K} /\left((1+T)^{p^{n}}-1\right) Y_{K} \simeq Z_{p}[[T]] /\left(P(T),(1+T)^{p^{n}}-1\right) \\
\simeq Z_{p}[[T]] /\left(p,(1+T)^{p^{n}}-1\right) \simeq Z_{p}[[T]] /\left(p, T^{p^{n}}\right)
\end{gathered}
$$

This completes the proof.
We give an example satisfying conditions of Theorem 2.2
Example 1. For $k=\mathbb{Q}(\sqrt{-53301})$ and $p=3$, p ramifies in $k, \lambda=11$ and $h_{k}=264=3 * 8 * 11$. When K is the cyclotomic \mathbb{Z}_{3}-extension of k, all the assumptions in Theorem 2.2 are satisfied. So we see that

$$
h_{0}=3, h_{1}=3^{3}, h_{2}=3^{9} .
$$

References

[1] K.Iwasawa, On \mathbb{Z}_{ℓ}-extensions of algebraic number fields, Ann.of Math. 98 (2) (1973), 246-326.
[2] T.Kataoka, A consequence of Greenberg's generalized conjecture on Iwasawa invariants of $\mathbb{Z}_{p^{-}}$ extensions, Journal of Number Theory 172 (3) (2017), 200-233.
[3] J.Minardi, Iwasawa modules for \mathbb{Z}_{p}^{d}-extensions of algebraic number fields, Ph.D dissertation, University of Washington, 1986.
[4] L.Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math., 83, Springer-Verlag, New York(1982).

Jangheon Oh

Department of Mathematics and Statistics, Sejong University, Seoul, Korea
E-mail: oh@sejong.ac.kr

