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EXTENSION OF GRACE’S THEOREM TO BI-COMPLEX

POLYNOMIALS

Zahid Manzoor Wani∗ and Wali Mohammad Shah†

Abstract. In this paper, we prove some results concerning the zeros of Bi-complex poly-
nomials. These results as special cases include Grace’s theorem and related results.

1. Introduction and Historical Background

Let C = {z : z = x + iy;x, y ∈ R and i =
√
−1} be the set of complex numbers.

For z1, z2 ∈ C, the set BC of bi-complex numbers is defined as BC = {Z : Z = z1 +
jz2; z1, z2 ∈ C}, where ij = ji = k and i2 = j2 = −k2 = −1. Here k is known as a
hyperbolic imaginary unit. Thus more precisely bi-complex numbers are complex numbers
with complex coefficients.

Addition and multiplication on BC is defined in the similar fashion as is defined on C
and it is easy to observe that the set BC forms a commutative ring. However due to the
presence of zero-divisors, BC is not a field. The set of zero-divisors in BC is given as:

O = {z1 + jz2 ∈ BC : z21 + z22 = 0} = {a(1± ij) : a ∈ C}.

For x1, x2, y1, y2 ∈ R, we have Z = z1 + jz2 = x1 + ix2 + jy1 + jiy2. Thus BC can be viewed
as a real vector space isomorphic to R4 via the map x1 + ix2 + jy1 + jiy2 → (x1, x2, y1, y2).

As (for reference see [3]) the structure of BC consists of two imaginary units and one
hyperbolic unit in it, therefore there are three possible conjugations on this structure:

1.: Z̄ := z̄1 + jz̄2 (the bar-conjugation);
2.: Z† := z1 − jz2 (the †-conjugation);

3.: Z∗ := (Z)
†

= Z† = z1 − jz2 (the ∗-conjugation).

One of the most important presentation of bi-complex numbers is the idempotent repre-
sentation. The bi-complex numbers e = 1+ij

2
, e† = 1−ij

2
are linearly independent in the

linear space BC over C. From the simple calculations, it can be easily seen that e+ e† = 1,

e−e† = ij, e.e† = 0, e2 = e and (e†)
2

= e†. Also it can be easily verified that any bi-complex
number Z = z1+jz2 can be uniquely written as Z = (z1−iz2)e+(z1+iz2)e

† and this unique
representation of the bi-complex numbers is known as their idempotent representation.
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If Z = z1 + jz2 = ζ1e + ζ2e
†, then the norm function ‖.‖ : BC→ R+, where R+ denotes

the set of all non-negative real numbers, is defined as:

‖Z‖ = {|z1|2 + |z2|2}
1
2 =

{ |ζ1|2 + |ζ2|2

2

} 1
2

.

From the idempotent representation of any bi-complex number Z = z1 + jz2 as Z =
(z1 − iz2)e+ (z1 + iz2)e

†, we get the idea of defining two spaces A = {z1 − iz2 : z1, z2 ∈ C}
and A = {z1+iz2 : z1, z2 ∈ C}, known as auxiliary complex spaces. Though A and A contain
same elements as in C but these convenient notations are used for special representation of
elements in the sense that each Z = z1 + jz2 = (z1 − iz2)e + (z1 + iz2)e

† ∈ BC associates
the points (z1− iz2) ∈ A and (z1 + iz2) ∈ A. Also to each point (z1− iz2, z1 + iz2) ∈ A×A,
there is a unique point in BC.

The cartesian set BC determined by X1 ⊂ A and X2 ⊂ A is defined as

X1×eX2 := {z1 + jz2 ∈ BC : z1 + jz2 = w1e+ w2e
†, (w1, w2) ∈ X1 ×X2}.

An open discus D(a; r1, r2) with centre a = a1e+ a2e
† and radii r1 > 0, r2 > 0 is defined as

D(a; r1, r2) = B(a1, r1)×eB(a2, r2)

= {w1e+ w2e
† ∈ BC : |w1 − a1| < r1, |w2 − a2| < r2}

and a closed discus D(a; r1, r2) with centre a = a1e+a2e
† and radii r1 > 0, r2 > 0 is defined

as

D(a; r1, r2) = B(a1, r1)×eB(a2, r2)

= {w1e+ w2e
† ∈ BC : |w1 − a1| ≤ r1, |w2 − a2| ≤ r2}.

Where B(z, r) and B(z, r) respectively represent open and closed ball with centre z and
radius r.

It is worth here to mention that D(a; r1, r2), the product of two discs respectively of
radii r1 and r2, geometrically represents a duocylinder or double cylinder in 4-dimensional
Euclidean space. This duocylinder or double cylinder in 4-dimensional Euclidean space is
analogous to a cylinder in 3- dimensional Euclidean space, which is the cartesian product
of a disc with a line segment (for reference see [6]). If both r1 > 0 and r2 > 0 are equal to
r, then the discus is called a BC−Disc and is denoted by D(a; r, r) = D(a; r).

A bi-complex polynomial of degree n is a function of the form

P (Z) =
n∑

i=0

AiZ
i, An 6= 0,

where Ai, i = 0, 1, 2, . . . , n are bi-complex numbers and Z is a bi-complex variable. Now
if we write Z = z1 + jz2 = ζ1e + ζ2e

† and Ai = αie + βie
† for all i = 0, 1, 2, . . . , n, then

Zi = ζ1
ie+ ζ2

ie† and we can re-write our polynomial in the idempotent representation as

P (Z) =
n∑

i=0

(αiζ
i
1)e+

n∑
i=0

(βiζ
i
2)e
† = f1(ζ1)e+ f2(ζ2)e

†.

Now if we denote the sets of distinct zeros of f1 and f2 by S1 and S2, and if S denotes the
set of distinct zeros of the polynomial P , then

S = S1e+ S2e
†.

Therefore the following three cases fully describe the structure of the null-set of the poly-
nomial P (Z) of degree n (for details see [3])
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1. If both polynomials f1 and f2 are of degree at least one, and if S1 = {z1,1, z1,2, . . . , z1,k}
and S2 = {z2,1, z2,2, . . . , z2,l}, then the set of distinct zeros of the polynomial P (z) is
given by

S = {Zs,t = z1,se+ z2,te
† : s = 1, . . . , k, t = 1. . . . , l}.

2. If f1 is identically zero, then S1 = C and S2 = {z2,1, z2,2, . . . , z2,l}, with l ≤ n. There-
fore

S = {Zt = λe+ z2,te
† : λ ∈ C, t = 1. . . . , l}.

Similarly, If f2 is identically zero, then S2 = C and S1 = {z1,1, z1,2, . . . , z1,k}, with
k ≤ n. Hence

S = {Zs = z1,se+ λe† : λ ∈ C, s = 1. . . . , k}.

3. If all the coefficients Ai with the exception A0 = α0e+ β0e
† are complex multiples of

e (respectively of e†), but β0 6= 0 (respectively α0 6= 0), then polynomial P has no
zeros.

In this paper, we extend some results concerning complex polynomials to Bi-complex poly-
nomials. Before discussing these results, we first recall the following basic definitions. Let Pn

be the class of complex polynomials of degree n. Let f, g ∈ Pn be such that for Aj, Bj ∈ C,
j = 0, 1, 2, . . . , n, f(z) =

∑n
j=0

(
n
j

)
Ajz

j and g(z) =
∑n

j=0

(
n
j

)
Bjz

j, AnBn 6= 0, then these

two polynomials are said to be Apolar, if their coefficients satisfy the equation

(1.1) A0Bn −
(
n

1

)
A1Bn−1 +

(
n

2

)
A2Bn−2 + ...+ (−1)nAnB0 = 0.

Clearly, for a given polynomial there are number of polynomials apolar to it. Also the
Hadamard product of these complex polynomials f and g is defined as

h(z) := (f ∗ g)(z) =
n∑

j=0

(
n

j

)
AjBjz

j.

1.1. Apolarity of Bi-complex polynomials. Following the approach of complex poly-
nomials, we can say that two bi-complex polynomials

F (Z) =
n∑

k=0

(
n

k

)
AkZ

k =
( n∑

k=0

(
n

k

)
αkζ

k
1

)
e+

( n∑
k=0

(
n

k

)
βkζ

k
2

)
e† = f1(ζ1)e+ f2(ζ2)e

†

and

G(Z) =
n∑

k=0

(
n

k

)
BkZ

k =
( n∑

k=0

(
n

k

)
γkζ

k
1

)
e+

( n∑
k=0

(
n

k

)
δkζ

k
2

)
e† = g1(ζ1)e+ g2(ζ2)e

†,
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where Ai = αie+ βie
†, Bi = γie+ δie

† for i = 1, 2, . . . , n and Z = ζ1e+ ζ1e
†, are apolar, if

A0Bn −
(
n

1

)
A1Bn−1 +

(
n

2

)
A2Bn−2 − . . .+ (−1)nAnB0

= (α0e+ β0e
†)(γne+ δne

†)−
(
n

1

)
(α1e+ β1e

†)(γn−1e+ δn−1e
†)+(

n

2

)
(α2e+ β2e

†)(γn−2e+ δn−2e
†)− . . .+ (−1)n(αne+ βne

†)(γ0e+ δ0e
†)

=
(
α0γn −

(
n

1

)
α1γn−1 +

(
n

2

)
α2γn−2 − . . .+ (−1)nαnγ0

)
e

+
(
β0δn −

(
n

1

)
β1δn−1 +

(
n

2

)
β2δn−2 − . . .+ (−1)nβnδ0

)
e†

= 0.

That is, if

(1) α0γn −
(
n

1

)
α1γn−1 +

(
n

2

)
α2γn−2 − . . .+ (−1)nαnγ0 = 0

and

(2) β0δn −
(
n

1

)
β1δn−1 +

(
n

2

)
β2δn−2 − . . .+ (−1)nβnδ0 = 0.

From (1) and (2), it follows that two bi-complex polynomials

F (Z) =
n∑

k=0

(
n

k

)
AkZ

k =
( n∑

k=0

(
n

k

)
αkζ

k
1

)
e+

( n∑
k=0

(
n

k

)
βkζ

k
2

)
e† = f1(ζ1)e+ f2(ζ2)e

†

and

G(Z) =
n∑

k=0

(
n

k

)
BkZ

k =
( n∑

k=0

(
n

k

)
γkζ

k
1

)
e+

( n∑
k=0

(
n

k

)
δkζ

k
2

)
e† = g1(ζ1)e+ g2(ζ2)e

†,

are Apolar, if the coefficients of their corresponding idempotent parts satisfy the following
equations simultaneously

α0γn −
(
n

1

)
α1γn−1 +

(
n

2

)
α2γn−2 − . . .+ (−1)nαnγ0 = 0

and

β0δn −
(
n

1

)
β1δn−1 +

(
n

2

)
β2δn−2 − . . .+ (−1)nβnδ0 = 0.

In other words, two bi-complex polynomials F (Z) = f1(ζ1)e+f2(ζ2)e
† and G(Z) = g1(ζ1)e+

g2(ζ2)e
† are apolar if their corresponding idempotent parts are apolar simultaneously.

1.2. Hadamard product of Bi-complex polynomials. Following the approach of com-
plex functions, we define the Hadamard product of two bi-complex polynomials

F (Z) =
n∑

k=0

(
n

k

)
AkZ

k =
( n∑

k=0

(
n

k

)
αkζ

k
1

)
e+

( n∑
k=0

(
n

k

)
βkζ

k
2

)
e† = f1(ζ1)e+ f2(ζ2)e

†

and

G(Z) =
n∑

k=0

(
n

k

)
BkZ

k =
( n∑

k=0

(
n

k

)
γkζ

k
1

)
e+

( n∑
k=0

(
n

k

)
δkζ

k
2

)
e† = g1(ζ1)e+ g2(ζ2)e

†
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by

H(Z) = F (Z) ∗G(Z)

=
n∑

j=0

(
n

j

)
AjBjZ

j.

Which further gives after substituting Ai = αie + βie
†, Bi = γie + δie

† for i = 1, 2, . . . , n
and Z = ζ1e+ ζ1e

†

H(Z) =
n∑

j=0

(
n

j

)
(αje+ βje

†)(γje+ δje
†)(ζ1e+ ζ2e

†)
j

=
n∑

j=0

(
n

j

)
(αje+ βje

†)(γje+ δje
†)(ζj1e+ ζj2e

†)

=
n∑

j=0

(
n

j

)
{(αjγjζ

j
1)e+ (βjδjζ

j
2)e†}

=
( n∑

j=0

(
n

j

)
αjγjζ

j
1

)
e+

( n∑
j=0

(
n

j

)
βjδjζ

j
2

)
e†

= (f1 ∗ g1)(ζ1)e+ (f2 ∗ g2)(ζ2)e†

= h1(ζ1)e+ h2(ζ2)e
†.

Thus the covolution or Hadamard product of two bi-complex polynomials F (Z) = f1(ζ1)e+
f2(ζ2)e

† and G(Z) = g1(ζ1)e+ g2(ζ2)e
†is defined by

H(Z) = F (Z) ∗G(Z)

= h1(ζ1)e+ h2(ζ2)e
†,(3)

where h1(ζ1) = (f1 ∗ g1)(ζ1) and h2(ζ2) = (f2 ∗ g2)(ζ2).

2. Results and Discussion

To prove our results, we need the following lemmas due to Price [3].

Lemma 2.1. Let X = X1e+X2e
† := {ζ1e+ ζ2e

† : ζ1 ∈ X1, ζ2 ∈ X2} be a domain in BC.
A bi-complex function F = f1e + f2e

† : X → BC is holomorphic if and only if both the
component functions f1 and f2 are holomorphic in X1 and X2 respectively.

Lemma 2.2. Let F be a bi-complex holomorphic function defined in a domain X =
X1e + X2e

† := {ζ1e + ζ2e
† : ζ1 ∈ X1, ζ2 ∈ X2} such that F (Z) = f1(ζ1)e + f2(ζ2)e

†, for all
Z = ζ1e+ ζ2e

† ∈ X. Then, F (Z) has a zero in X if and only if f1(ζ1) and f2(ζ2) both have
a zero at ζ1 in X1 and at ζ2 in X2 respectively.

The main aim of writing this paper is to extend Grace’s theorem [1] and related results
proved for complex polynomials to bi-complex polynomials. We first prove the following
result, which extends Grace’s theorem to bi-complex polynomials.

Theorem 2.3. If F (Z) and G(Z) are apolar bi-complex polynomials and if any one of
them has all its zeros in a closed discus D(c; r1, r2), then the other will have atleast one
zero in D.
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Proof. Let the two bi-complex polynomials in their idempotent representation be

F (Z) = f1(ζ1)e+ f2(ζ2)e
†

and
G(Z) = g1(ζ1)e+ g2(ζ2)e

†.

Assume that the bi-complex polynomial F (Z) has all its zeros in discus

D(c; r1, r2),

where c = c1e+ c2e
†. This implies by Lemma 2.2 that f1(ζ1) and f2(ζ2) have all their zeros

in
X1 = {ζ1 ∈ A : |ζ1 − c1| ≤ r1} ⊂ C

and
X2 = {ζ2 ∈ A : |ζ2 − c2| ≤ r2} ⊂ C

respectively. Now it is given that F (Z) and G(Z) are apolar bi-complex polynomials.
Therefore the polynomial f1(ζ1) is apolar to polynomial g1(ζ1) and the polynomial f2(ζ2)
is apolar to the polynomial g2(ζ2) simultaneously. Hence by Grace’s theorem for complex
polynomials, we conclude that atleast one zero of g1(ζ1) and atleast one zero of g2(ζ2) lie
in X1 and X2 respectively. Hence by lemma 2.2, bi-complex polynomial

G(Z) = g1(ζ1)e+ g2(ζ2)e
†

has at least one zero in
X1e+X2e

† = D(c; r1, r2).

This completes the proof of the Theorem.

Next we prove the following result, which extends a result due to Szegö [4] to bi-complex
polynomials.

Theorem 2.4. From the two bi-complex polynomials F (z) :=
∑n

j=0

(
n
j

)
AjZ

j andG(z) :=∑n
j=0

(
n
j

)
BjZ

j, let us form the composite bi-complex polynomial

H(Z) :=
n∑

j=0

(
n

j

)
AjBjZ

j.

If all the zeros of F (z) lie in a closed discus D(c; r1, r2), then every zero w = w1e+w2e
† of

H(Z) has the form w = −µϑ, where µ = µ1e + µ2e
† is a suitably chosen point in D and

ϑ = ϑ1e+ ϑ2e
† is a zero of G(Z).

Proof. Let the two bi-complex polynomials in their idempotent representation be

F (Z) = f1(ζ1)e+ f2(ζ2)e
†

and
G(Z) = g1(ζ1)e+ g2(ζ2)e

†.

Now, we have the composite bi-complex polynomial as

H(Z) = F (Z) ∗G(Z)

=
n∑

j=0

(
n

j

)
AjBjZ

j

= h1(ζ1)e+ h2(ζ2)e
†,

where h1(ζ1) = (f1 ∗ g1)(ζ1) and h2(ζ2) = (f2 ∗ g2)(ζ2). Since ϑ = ϑ1e+ ϑ2e
† is a zero of

G(Z) = g1(ζ1)e+ g2(ζ2)e
†,
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therefore ϑ1 and ϑ2 are the zeros of g1(ζ1) and g2(ζ2) respectively. Also µ = µ1e+ µ2e
† is a

suitably chosen point in D, therefore

µ1 ∈ X1 = {ζ1 ∈ A : |ζ1 − c1| ≤ r1} ⊂ C
and

µ2 ∈ X2 = {ζ2 ∈ A : |ζ2 − c2| ≤ r2} ⊂ C.
Hence with the help of Szeg0̈’s theorem [4] for complex polynomials, it follows that all the
zeros of

h1(ζ1) = (f1 ∗ g1)(ζ1)
and

h2(ζ2) = (f2 ∗ g2)(ζ2)
are respectively of the forms w1 = −µ1ϑ1 and w2 = −µ2ϑ2. This implies from Lemma 2.2
that all the zeros of the bi-complex polynomial

H(Z) = h1(ζ1)e+ h2(ζ2)e
†

are of the form

w = w1e+ w2e
†

= (−µ1ϑ1)e+ (−µ2ϑ2)e
†

= −{µ1ϑ1e+ µ2ϑ2e
†}

= −µϑ.

We also prove the following result, which extends a result due to Cohn and Egervary ( [2],
p. 66) to bi-complex polynomials.

Theorem 2.5. If all the zeros of a bi-complex polynomial F (Z) :=
∑n

j=0

(
n
j

)
AjZ

j

lie in open discus D(c; r1, r2) and if all the zeros of the bi-complex polynomial G(Z) :=∑n
j=0

(
n
j

)
BjZ

j lie in closed discus D(c; s1, s2), then all the zeros of the composite bi-complex

polynomial

H(Z) :=
n∑

j=0

(
n

j

)
AjBjZ

j

lie in open discus D(c; r1s1, r2s2).

Proof. Here the two bi-complex polynomials in their idempotent representation are

F (Z) = f1(ζ1)e+ f2(ζ2)e
†

and
G(Z) = g1(ζ1)e+ g2(ζ2)e

†.

Also, we have the composite bi-complex polynomial as

H(Z) = F (Z) ∗G(Z)

=
n∑

j=0

(
n

j

)
AjBjZ

j

= h1(ζ1)e+ h2(ζ2)e
†,

where h1(ζ1) = (f1 ∗ g1)(ζ1) and h2(ζ2) = (f2 ∗ g2)(ζ2). Now, if ϑ = ϑ1e+ ϑ2e
† is a zero of

G(Z) = g1(ζ1)e+ g2(ζ2)e
†
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and µ = µ1e+µ2e
† is a suitably chosen point in D(c; r1, r2), then from the proof of theorem

2.4, we have that every zero of

h1(ζ1) = (f1 ∗ g1)(ζ1)
and

h2(ζ2) = (f2 ∗ g2)(ζ2)
are respectively of the forms w1 = −µ1ϑ1 and w2 = −µ2ϑ2. This implies

|w1| = | − µ1ϑ1|
= |µ1||ϑ1|
< r1s1.

Similarly |w2| < r2s2. Thus we conclude that all the zeros of h1(ζ1) and all the zeros of
h2(ζ2) lie in

X1 = {ζ1 ∈ A : |ζ1 − c1| < r1s1} ⊂ C
and

X2 = {ζ2 ∈ A : |ζ2 − c2| < r2s2} ⊂ C
respectively. Hence by lemma 2.2, bi-complex polynomial

H(Z) = h1(ζ1)e+ h2(ζ2)e
†

has all its zeros in
X1e+X2e

† = D(c; r1s1, r2s2).

This completes the proof.

Finally we prove the following result, which extends a result due to Walsh [5] to bi-
complex polynomials.

Theorem 2.6. From two bi-complex polynomials

F (Z) :=
n∑

j=0

AjZ
j

and

G(z) :=
n∑

j=0

AjZ
j

of degree n, let us form the composite bi-complex polynomial as

H(z) :=
n∑

j=0

(n− j)!Bn−jF
j(Z) =

n∑
j=0

(n− j)!An−jG
j(Z)

of degree n. if all the zeros of F (Z) lie in a discus D(c; r1, r2), then all the zeros of H(Z)
has the form w = ϑ+ µ, where ϑ is a zero of G(Z) and µ is suitably chosen point in D.

Proof. From the hypothesis, we have

F (Z) :=
n∑

i=0

AiZ
i and G(Z) :=

n∑
i=0

BiZ
i.

Therefore,

F k(z) =
n∑

i=k

i!

(i− k)!
AiZ

(i−k), k = 1, 2, ..., n
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and

Gk(z) =
n∑

i=k

i!

(i− k)!
BiZ

(i−k), k = 1, 2, ..., n.

Now we have

n∑
k=0

(n− k)!Bn−kF
k(Z) = n!BnF (Z) + (n− 1)!Bn−1F

′(Z) + ...+

B1F
(n−1)(Z) +B0F

n(Z).

This gives

n∑
k=0

(n− k)!Bn−kF
k(Z) = n!Bn[A0 + A1 + ...+ An−1Z

n−1 + AnZ
n]+

(n− 1)!Bn−1[A1 + 2A2Z + ...+ (n− 1)An−1Z
n−2+

nAnZ
n−1] + ...+B1[(n− 1)!An−1 + n!AnZ] +B0n!An

= [n!A0Bn + (n− 1)!A1Bn−1 + ...+ (n− 1)!An−1B1+

n!AnB0] + Z[n!A1Bn + 2(n− 1)!A2Bn−1 + ...+ n!AnB1]+

...+ Zn−1[n!An−1Bn + n(n− 1)!AnBn−1] + Zn[n!AnBn].(4)

Also we have

n∑
k=0

(n− k)!An−kG
k(Z) = n!AnG(Z) + (n− 1)!An−1G

′(Z) + ...+

A1G
(n−1)(Z) + A0G

n(z)

= n!An[B0 +B1 + ...+Bn−1Z
n−1 +BnZ

n]+

(n− 1)!An−1[B1 + 2B2Z + ...+ (n− 1)Bn−1Z
n−2+

nBnZ
n−1]+, ...+ A1[(n− 1)!Bn−1 + n!BnZ] + A0n!Bn

= [n!AnB0 + (n− 1)!An−1B1 + ...+ (n− 1)!A1Bn−1+

n!A0Bn] + Z[n!AnB1 + 2(n− 1)!An−1B2 + ...+ n!A1Bn]+

...+ Zn−1[n!AnBn−1 + n(n− 1)!An−1Bn] + Zn[n!AnBn].(5)

From (4) and (5), we conclude that

H(Z) =
n∑

k=0

(n− k)!Bn−kF
(k)(Z) =

n∑
k=0

(n− k)!An−kG
(k)(Z).
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Consider Aj = αje+ βje
†, Bj = γje+ δje

† and F (Z) = f1(ζ1)e+ f2(ζ2)e
†, therefore

H(Z) =
n∑

k=0

(n− k)!Bn−kF
(k)(Z)

=
n∑

k=0

((n− k)!e+ (n− k)!e†)(γn−ke+ δn−ke
†)(f

(k)
1 (ζ1)e+ f

(k)
2 (ζ2))

=
n∑

k=0

((n− k)!γn−kf
(k)
1 (ζ1))e+ ((n− k)!δn−kf

(k)
2 (ζ2))

=
n∑

k=0

(
(n− k)!γn−kf

(k)
1 (ζ1)

)
e+

n∑
k=0

(
(n− k)!δn−kf

(k)
2 (ζ2)

)
= h1(ζ1)e+ h2(ζ2)e

†,(6)

where

h1(ζ1) =
n∑

k=0

(
(n− k)!γn−kf

(k)
1 (ζ1)

)
and

h2(ζ2) =
n∑

k=0

(
(n− k)!δn−kf

(k)
2 (ζ2)

)
.

Let ϑ = ϑ1e + ϑ2e
† be a zero of G(Z) = g1(ζ1)e + g2(ζ2)e

†, therefore ϑ1 and ϑ2 are the
zeros of g1(ζ1) and g2(ζ2) respectively. Also µ = µ1e+ µ2e

† is a suitably chosen point in D,
therefore

µ1 ∈ X1 = {ζ1 ∈ A : |ζ1 − c1| ≤ r1} ⊂ C
and

µ2 ∈ X2 = {ζ2 ∈ A : |ζ2 − c2| ≤ r2} ⊂ C
respectively. Hence with the help of Walsh’s theorem [5] for complex polynomials, we have
that all the zeros of h1(ζ1) and h2(ζ2) are respectively of the forms

w1 = µ1 + ϑ1

and
w2 = µ2 + ϑ2.

This implies from Lemma 2.2 that all the zeros of bi-complex polynomial

H(Z) = h1(ζ1)e+ h2(ζ2)e
†

are of the form

w = w1e+ w2e
†

= (µ1 + ϑ1)e+ (µ2 + ϑ2)e
†

= (µ1e+ ϑ1e
†) + (µ2e+ ϑ2e

†)

= µ+ ϑ.

Hence the theorem is proved completely.
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