DOI QR코드

DOI QR Code

In-vitro Antimalarial Investigations and Molecular Docking Studies of Compounds from Trema orientalis L. (blume) Leaf Extract

  • Samuel, Babatunde Bolorunduro (Laboratory for Natural Products and Biodiscovery Research, Pharmaceutical Chemistry Department, Faculty of Pharmacy, University of Ibadan) ;
  • Oluyemi, Wande Michael (Laboratory for Natural Products and Biodiscovery Research, Pharmaceutical Chemistry Department, Faculty of Pharmacy, University of Ibadan) ;
  • Okedigba, Ayoyinka Oluwaseun (Laboratory for Natural Products and Biodiscovery Research, Pharmaceutical Chemistry Department, Faculty of Pharmacy, University of Ibadan)
  • Received : 2021.09.13
  • Accepted : 2022.01.12
  • Published : 2022.06.30

Abstract

The identification of Plasmodium falciparum enoyl acyl-carrier protein reductase (pfENR) is considered as a potential biological target against malaria. Trema orientalis is considered a rich source of phytochemicals useful in malaria treatment. This study evaluated the in-vitro inhibitory activity of the extract and isolated compounds of T. orientalis leaf; the isolated compounds and the analogues of the most active compound were subjected to in-silico molecular docking studies on pfENR. The methanolic extract of T. orientalis was subjected to repeated chromatographic separation which led to the isolation of some compounds. The isolated compounds from the plant were examined for their antimalarial activity using β-hematin inhibition assay. Virtual screening via molecular docking and ADMET studies were conducted to gain insight into the mechanism of binding of ligand and to identify effective pfENR inhibitors. The isolated compounds and the analogues of the most active isolates were gotten from PubChem library for use in docking study. Hexacosanol and β-sitosterol showed inhibition of the β-hematin formation. The docking results showed that hexacosanol, β-sitosterol and the analogues of β-sitosterol displayed binding energy ranging between -6.1 kcal/mol and -11.6 kcal/mol. Sitosterol glucoside has the highest docking score. Some of the ligands showed more binding affinity than known bioactive compounds used as reference. Analogues of β-sitosterol has been shown to be potential inhibitors of pfENR, therefore, the findings from this study suggest that sitosterol glucoside and ergosterol peroxide could act as antimalarial agents after further lead optimisation investigations.

Keywords

Acknowledgement

The authors hereby acknowledge the Indian Institute of Technology, Uttar Pradesh for assistance with the running of NMR analysis of compounds.

References

  1. Tallorin, L.; Durrant, J. D.; Nguyen, Q. G.; McCammon, J. A.; Burkart, M. D. Bioorg. Med. Chem. 2014, 22, 6053-6061. https://doi.org/10.1016/j.bmc.2014.09.002
  2. Oluyemi, W. M.; Samuel, B. B.; Kaehlig, H.; Zehl, M.; Parapini, S.; D'Alessandro, S.; Taramelli, D.; Krenn, L. J. Ethnopharmacol. 2020, 247, 112203. https://doi.org/10.1016/j.jep.2019.112203
  3. Wande, O. M.; Babatunde, S. B. Int. J. Biol. Chem. Sci. 2017, 11, 2971-2981. https://doi.org/10.4314/ijbcs.v11i6.33
  4. Babatunde, S.; Michael, O. W.; Oyindamola, A. Afri. J. Biotech. 2015, 14, 2966-2971. https://doi.org/10.5897/AJB2015.14551
  5. Dondorp, A. M.; Nosten, F.; Yi, P.; Das, D.; Phyo, A. P.; Tarning, J.; Lwin, K. M.; Ariey, F.; Hanpithakpong, W.; Lee, S. J.; Ringwald, P.; Silamut, K.; Imwong, M.; Chotivanich, K.; Lim. P.; Herdman, T.; An, S. S.; Yeung, S.; Singhasivanon, P.; Day, N. P. J.; Lindegardh, N.; Socheat, D.; White, N. J. N. Engl. J. Med. 2009, 361, 455-467. https://doi.org/10.1056/NEJMoa0808859
  6. Flannery, E. L.; Fidock, D. A.; Winzeler, E. A. J. Med. Chem. 2013, 56, 7761-7771. https://doi.org/10.1021/jm400325j
  7. Belluti, F.; Perozzo, R.; Lauciello, L.; Colizzi, F.; Kostrewa, D.; Bisi, A.; Gobbi, S.; Rampa, A.; Bolognesi, M. L.; Recanatini, M.; Brun, R.; Scapozza, L.; Cavalli, A. J. Med. Chem. 2013, 56, 7516-7526. https://doi.org/10.1021/jm400637m
  8. Malau, N. D.; Azzahra, S. T. J. Applied Chem. Sci. 2018, 5, 491-496.
  9. Nicola, G.; Smith, C. A.; Lucumi, E.; Kuo, M. R.; Karagyozov, L.; Fidock, D. A.; Sacchettini, C.; Abagyan, R. Biochem. Biophys. Res. Commun. 2007, 358, 686-691. https://doi.org/10.1016/j.bbrc.2007.04.113
  10. Uday, C. K.; Shaik, M. Pharmacologyonline 2010, 2, 79-98.
  11. Perozzo, R.; Kuo, M.; Sidhu, A. B. S.; Valiyaveettil, J. T.; Bittman, R.; William, R. J. Jr.; Fidock, D. A.; Sacchettini, J. C. J. Biol. Chem. 2002, 277, 13106-13114. https://doi.org/10.1074/jbc.M112000200
  12. Iwu, M. M. In Handbook of African Medicinal Plants; CRC Press Inc: Florida, 1993, pp 251-252.
  13. Olanlokun, J. O.; David, O. M.; Afolayan, A. J. BMC Compliment. Altern. Med. 2017, 17, 407. https://doi.org/10.1186/s12906-017-1914-x
  14. Abiodun, O.; Gbotosho, G.; Ajaiyeoba, E.; Happi, T.; Falade, M.; Wittlin, S.; Sowunmi, A.; Brun, R.; Oduola, A. Pharm. Biol. 2011, 49, 9-14. https://doi.org/10.3109/13880209.2010.490224
  15. Orwa, C.; Mutua, A.; Kindt, R.; Jamnadass, R.; Simons, A. Agroforestry database: A tree reference and selection guide version4; World Agroforestry Centre; Kenya, 2009, Available from http://www.worldagroforestry.org/af/treedb/.
  16. Vargas, S.; Ndjoko Ioset, K.; Hay, A. E.; Ioset, J. R.; Wittlin, S.; Hostettmann, K. J. Pharm. Biomed. Anal. 2011, 56, 880-886. https://doi.org/10.1016/j.jpba.2011.06.026
  17. Chang, M. W.; Ayeni, C.; Breuer, S.; Torbett, B. E. PLoS one 2010, 5, e11955. https://doi.org/10.1371/journal.pone.0011955
  18. Park, H.; Lee, J.; Lee, S. Proteins 2006, 65, 549-554. https://doi.org/10.1002/prot.21183
  19. Nisha, C. M.; Kumar, A.; Vimal, A.; Bai, B. M.; Pal, D.; Kumar, A. J. Mol. Graph. Model 2016, 65, 100-107. https://doi.org/10.1016/j.jmgm.2016.03.001
  20. Gade, S.; Rajamanikyam, M.; Vadlapudi, V.; Nukala, K. M.; Aluvala, R.; Giddigari, C.; Karanam, N. J.; B arua, N. C.; Pandey, R.; Upadhyayula, V. S. V.; Sripadi, P.; Amanchy, R.; Upadhyayula, S. M. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 541-550. https://doi.org/10.1016/j.bbagen.2016.11.044
  21. Mohamed, S.; Mahmoud, A.; Michael, F. T.; Abdelaaty, H.; Amal, Z. K. J. Anal. Method. Chem. 2018, 2018, 1-10.
  22. Ododo, M. M.; Choudhury, M. K.; Dekebo, A. H. Springerplus 2016, 5, 1210. https://doi.org/10.1186/s40064-016-2894-x
  23. Samuel, B. B.; Olaniyi, A. A.; Olakunle, I. D.; Michele, D.; Okogun, J. I.; J. Phytomed. Ther. 2009, 14, 31-36.
  24. Oluyemi, W.; Samuel, B. B.; Hans-Peter, K.; Donatella, T.; Liselotte, K. Acta Pharm. Sci. 2019, 57, 21-30.
  25. Freundlich, J. S.; Wang, F.; Tsai, H. C.; Kuo, M.; Shieh, H. M.; Anderson, J. W.; Nkrumah, L. J.; Valderramos, J. C.; Yu, M.; Kumar, T. R.; Valderramos, S. G.; Jacobs, W. R. Jr.; Schiehser, G. A.; Jacobus, D. P.; Fidock, D. A.; Sacchettini, J. C. J. Biol. Chem. 2007, 282, 25436-25444. https://doi.org/10.1074/jbc.M701813200
  26. Elekofehinti, O. O.; Ejelonu, O. C.; Kamdem, J. P.; Akinlosotu, O. B.; Famuti, A.; Adebowale, D. D.; Iwaloye, O.; Bulu, Y. I.; Kade, I. J.; Rocha, J. B. T. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 241-249. https://doi.org/10.1016/j.bjbas.2018.02.007
  27. Wadhwa, P.; Saha, D.; Sharma, A. Curr. Comput. Aided Drug Des. 2015, 11, 245-257. https://doi.org/10.2174/1573409911666151030102113
  28. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv. Drug Deliv. Rev. 1997, 23, 3-25. https://doi.org/10.1016/S0169-409X(96)00423-1