DOI QR코드

DOI QR Code

Influence of a chemical additive on the reduction of highly concentrated ammonium nitrogen(NH4+-N) in pig wastewater

양돈 폐수로부터 고농도 암모니아성 질소의 감소를 위한 화학적 첨가제의 영향

  • Su Ho Bae (Department of Civil Engineering, Andong National University) ;
  • Eun Kim (Gyeongbuk Science High School) ;
  • Keon Sang Ryoo (Department of Applied Chemistry, Andong National University)
  • 배수호 (안동대학교 토목공학과) ;
  • 김은 (경북과학고등학교) ;
  • 유건상 (안동대학교 응용화학과)
  • Received : 2022.08.01
  • Accepted : 2022.08.29
  • Published : 2022.09.30

Abstract

Excess nitrogen (N) flowing from livestock manure to water systems poses a serious threat to the natural environment. Thus, livestock wastewater management has recently drawn attention to this related field. This study first attempted to obtain the optimal conditions for the further volatilization of NH3 gas generated from pig wastewater by adjusting the amount of injected magnesia (MgO). At 0.8 wt.% of MgO (by pig wastewater weight), the volatility rate of NH3 increased to 75.5% after a day of aeration compared to untreated samples (pig wastewater itself). This phenomenon was attributed to increases in the pH of pig wastewater as MgO dissolved in it, increasing the volatilization efficiency of NH3. The initial pH of pig wastewater was 8.4, and the pH was 9.2 when MgO was added up to 0.8 wt.%. Second, the residual ammonia nitrogen (NH4+-N) in pig wastewater was removed by precipitation in the form of struvite (NH4MgPO4·6H2O) by adjusting the pH after adding MgO and H3PO4. Struvite produced in the pig wastewater was identified by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) analysis. White precipitates began to form at pH 6, and the higher the pH, the lower the concentration of NH4+-N in pig wastewater. Of the total 86.1% of NH4+-N removed, 62.4% was achieved at pH 6, which was the highest removal rate. Furthermore, how struvite changes with pH was investigated. Under conditions of pH 11 or higher, the synthesized struvite was completely decomposed. The yield of struvite in the precipitate was determined to be between 68% and 84% through a variety of analyses.

양돈 폐수로부터 NH3를 제거하기 위해서 양돈 폐수의 무게 대비 MgO(wt. %)의 양을 변화시키면서 양돈 폐수에 주입하였다. 24시간 동안 폭기시키면서 MgO (0.8 wt. %)로 처리한 양돈 폐수는 미처리 양돈 폐수에 비하여 NH3 가스 발생량이 75.5% 감소하였으며, 1개월 동안 밀폐된 상태에서도 NH3 가스가 거의 발생하지 않았다. 본 연구에서 사용한 MgO는 양돈 폐수의 pH를 상승시켜 NH3가 가스 형태로 탈기될 수 있는 조건을 제공해 주었으며, 과량 주입할 경우에도 호기성 미생물 활동에 악영향을 줄 수 있는 pH 10.5를 초과하지 않았다. 양돈 폐수에서 제거되지 않고 남아 있는 NH4+는 인산과 MgO를 첨가하여 스트루바이트의 형태로 침전시켜 제거하였다. 스트루바이트를 합성하기 위해서 NH4+의 몰비와 동일하게 인산과 MgO를 주입하고 황산을 첨가하여 양돈 폐수의 초기 pH를 5로 조정한 후 점진적으로 폐수의 pH를 상승시켰다. pH 6에서 흰 침전물 소위 스트루바이트가 생성되기 시작하여 pH 10까지 지속적으로 합성이 이루어졌다. 총 86.1%의 NH4+ 제거 중에서 62.4%가 약산성인 pH 6에서 제거되었다. 침전물 중에 스트루바이트의 존재를 XRD로 조사하였고 그 결과 pH 6에서 침전물이 스트루바이트의 결정성을 갖는다고 확인되었다. pH 7~10인 조건에서는 스트루바이트가 비결정질 형태로 존재하며, pH가 11인 이상에서는 생성된 스트루바이트가 완전히 붕괴되었다. 침전물 내에서 스트루바이트의 수득률은 에너지 분산형 X-ray, 열중량분석기, 원소분석기의 결과치를 바탕으로 하여 68%~84%임을 확인할 수 있었다. 만약 NH3가 제거된 양돈 폐수를 건조 퇴비에 뿌려 부숙하게 된다면 퇴비의 부숙 기간 동안 NH3로 인한 악취를 상당히 감소시킬 수 있을 것이다. 이와 더불어, MgO로 처리한 양돈 폐수는 가축 퇴비에 인과 질소를 보충하는 역할을 담당할 수 있을 것이다. 앞으로도 본 연구를 계속적으로 진행하여 국내에서 친환경퇴비를 생산할 수 있는 기틀을 마련하고자 한다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1F1A1060823).

References

  1. Alshameri A, C Yan and X Lei. 2014. Enhancement of phosphate removal from water by TiO2/Yemeni natural zeolite: preparation, characterization and thermodynamic. Microporous Mesoporous Mat. 196:145-157. https://doi.org/10.1016/j.micromeso.2014.05.008
  2. Bae SH and KS Ryoo. 2022. Odor reduction of pig wastewater using magnesia (in-situ test). J. Kor. Chem. Soc. 66:202-208. https://doi.org/10.5012/jkcs.2022.66.3.202
  3. Edward Wagner KG. 2022. Precipitating phosphorous as struvite from anaerobically-digested dairy manure. J. Clean. Product. 339:130675. https://doi.org/10.1016/j.jclepro.2022.130675
  4. Environment Ministry Enforcement Decree of the Air Conservation Act. 2021. Ministry of Environment. Sejong, Korea. https://elaw.klri.re.kr/eng_mobile/viewer.do?hseq=57231&type=sogan&key=16
  5. Ganrot Z, G Dave and E Nilsson. 2007. Recovery of N and P from human urine by freezing, struvite precipitation and adsorption to zeolite and active carbon. Bioresour. Technol. 98:3112-3121. https://doi.org/10.1016/j.biortech.2006.10.038
  6. Huang H, X Xiao, B Yan and L Yang. 2010. Ammonium removal from aqueous solutions by using natural chinese zeolite as adsorbent. J. Hazard. Meter. 175:247-252. https://doi.org/10.1016/j.jhazmat.2009.09.156
  7. Huang H, C Xu and W Zhang. 2011. Removal of nutrients from piggery wastewater using struvite precipitation and pyrogenation technology. Bioresour. Technol. 102:2523-2528. https://doi.org/10.1016/j.biortech.2010.11.054
  8. Huang H, D Xiao, Q Zhang and L Ding. 2014. Removal of ammonia from landfill leachate by struvite precipitation with the use of low-cost phosphate and magnesium sources. J. Environ. Manage. 145:191-198. https://doi.org/10.1016/j.jenvman.2014.06.021
  9. Huang H, HY Jiang and L Ding. 2014. Recovery and removal of ammonia-nitrogen and phosphate from swine wastewater by internal recycling of struvite chlorination product. Bioresour. Technol. 172:253-259. https://doi.org/10.1016/j.biortech.2014.09.024
  10. Hwang IS, YM Park, YE Lee, DW Kim, JS Park, EJ Oh, J You and GU Jeong. 2020. Evaluation of nutrients and heavy metals removal by Ankistrodesmus bibraiannus. Korean J. Environ. Biol. 38:82-92. https://doi.org/10.11626/KJEB.2020.38.1.082
  11. Krishnamoorthy N, T Arunachalam and B Paramasivan. 2021. A comparative study of phosphorous recovery as struvite from cow and human urine. Mater. Today Proceedings 47:391-395. https://doi.org/10.1016/j.matpr.2021.04.587
  12. Li X, X Zhao, J Zhang, J Hao and Q Zhang. 2022. Struvite crystallization by using active serpentine: An innovative application for the economical and efficient recovery of phosphorous from black water. Water Res. 221:118678. https://doi.org/10.1016/j.watres.2022.118678
  13. Liao M, Y Liu, E Tian, W Ma and H Liu. 2020. Phosphorous removal and high-purity struvite recovery from hydrolyzed urine with spontaneous electricity production in Mg-air fuel cell. Chem. Eng. J. 391:123517. https://doi.org/10.1016/j.cej.2019.123517
  14. Muhmood A, S Wu, J Lu, Z Aimal, H Luo and R Dong. 2018. Nutrient recovery from anaerobically digested chicken slurry via struvite: performance optimization and interactions with heavy metals and pathogens. Sci. Total Environ. 635:1-9. https://doi.org/10.1016/j.scitotenv.2018.04.129
  15. Rech I, NY Kamaogawa, DL Jones and PS Pavinato. 2020. Synthesis and characterization of struvite derived from poultry manure as a mineral fertilizer. J. Environ. Manage. 272:111072. https://doi.org/10.1016/j.jenvman.2020.111072
  16. Shu J, H Wu, M Chen, H Peng, B Li, R Riu, Z Liu, B Wang, T Huang and Z Hu. 2019. Fractional removal of manganese and ammonia nitrogen from electrolytic metal manganese residue leachate using carbonate and struvite precipitation. Water Res. 153:229-238. https://doi.org/10.1016/j.watres.2018.12.044
  17. Song JM, HS Yang, HJ Ko, YJ Kim, KY Kim and CH Kang. Seasonal concentration and emission characteristics of ordorous compounds produced from swine in Jeju Island. 2013. Anal. Sci. Technol. 26:364-374. https://doi.org/10.5806/AST.2013.26.6.364
  18. Sung HG, SB Cho, SS Lee, YJ Choi and SS Lee. 2017. Study on Korean commercial additives and agents for reducing odor of manure in animal farm. J. Agric. Life Sci. 51:95-104. https://doi.org/10.14397/jals.2017.51.3.95
  19. Tansel B, G Lunn and O Monje. 2018. Struvite formation and decomposition characteristics for ammonia and phosphorous recovery: a review of magnesium-ammonia-phosphate interactions. Chemosphere 194:504-514. https://doi.org/10.1016/j.chemosphere.2017.12.004
  20. Warmadewanyhi JC and D Liu. 2009. Recovery of phosphate and ammonium as struvite from semiconductor wastewater. Sep. Purif. Technol. 64:368-373. https://doi.org/10.1016/j.seppur.2008.10.040