DOI QR코드

DOI QR Code

Spatial distribution of phytoplankton in Gamak Bay in spring, with emphasis on small phytoplankton

  • Yeongji Oh (Department of Ocean Integrated Science, Chonnam National University) ;
  • Yoonja Kang (Department of Ocean Integrated Science, Chonnam National University)
  • Received : 2022.08.22
  • Accepted : 2022.10.28
  • Published : 2022.12.31

Abstract

Phytoplankton communities, with emphasis on picoplankton and nanoplankton, were investigated in Gamak Bay, South Korea, where freshwater input and coastal water intrusion shape ecosystem functions. Shellfish farms and fish farms are located in the inner bay and outer bay, respectively, and tides translocate uneaten food and urine production from aquaculture farms toward the inner bay. Water masses were distinctly different based on a significantly different density between the surface and bottom layer and among three water masses, including the inner bay, outer bay, and Yeosu Harbor. Phytoplankton communities were quantified using flow cytometry and size-fractionated chlorophyll-a (chl-a) was measured. Salinity was a principal variable separating phytoplankton communities between the surface and bottom layer, whereas Si(OH)4 controlled the communities in the inner bay, and NH4+ and PO43- governed the outer bay communities. While phycocyanin-containing (PC) cyanobacteria dominated in the outer bay, phycoerythrin-containing (PE) cyanobacteria dominance occurred with cryptophyte dominance, indicating that nutrients affected the distribution of pico- and nanoplankton and that cryptophytes potentially relied on a mixotrophic mode by feeding on PE cyanobacteria. Interestingly, picoeukaryotes and eukaryotes larger than 10 ㎛ were mostly responsible for the ecological niche in the western region of the bay. Given that chl-a levels have historically declined, our study highlights the potential importance of increased small phytoplankton in Gamak Bay. Particularly, we urge an examination of the ecological role of small phytoplankton in the food supply of cultivated marine organisms.

Keywords

Acknowledgement

This research was performed using R/V Chungkyung at Chonnam National University. We are grateful to the students and researchers who participated in this study for their assistance with field sampling and laboratory analyses. This research was supported by the "Survey of coastal fisheries resources and marine environmental ecology in the South Sea (R2022037)" funded by the National Institute of Fisheries Science (NIFS), Korea, and was financially supported by Chonnam National University(202233880001). This research as a part of the project titled "Research center for fishery resource management based on the information and communication technology" (2022, 20180384), funded by the Ministry of Oceans and Fisheries.

References

  1. Agawin NS, CM Duarte and S Agusti. 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 45:591-600. https://doi.org/10.4319/lo.2000.45.8.1891a
  2. Ansotegui A, A Sarobe, JM Trigueros, I Urrutxurtu and E Orive. 2003. Size distribution of algal pigments and phytoplankton assemblages in a coastal-estuarine environment: contribution of small eukaryotic algae. J. Plankton Res. 25:341-355. https://doi.org/10.1093/plankt/25.4.341
  3. Barone R and L Naselli-Flores. 2003. Distribution and seasonal dynamics of Cryptomonads in Sicilian water bodies. Hydrobiology 502:325-329. https://doi.org/10.1023/b:hydr.0000004290.22289.c2
  4. Bibi R, HY Kang, D Kim, J Jang, GK Kundu, YK Kim and CK Kang. 2020. Dominance of autochthonous phytoplankton-derived particulate organic matter in a low-turbidity temperate estuarine embayment, Gwangyang Bay, Korea. Front. Mar. Sci. 7:580260. https://doi.org/10.3389/fmars.2020.580260
  5. Blumwald E and E Tel-Or. 1982. Osmoregulation and cell composition in salt-adaptation of Nostoc muscorum. Arch. Microbiol. 132:168-172. https://doi.org/10.1007/bf00508725
  6. Bouwman AF, A Beusen, C Overbeek, D Bureau, M Pawlowski and P Glibert. 2013a. Hindcasts and future projections of global inland and coastal nitrogen and phosphorus loads due to finfish aquaculture. Rev. Fish. Sci. 21:112-156. https://doi.org/10.1080/10641262.2013.790340
  7. Bouwman L, A Beusen, PM Glibert, C Overbeek, M Pawlowski, J Herrera, S Mulsow, R Yu and M Zhou. 2013b. Mariculture: significant and expanding cause of coastal nutrient enrichment. Environ. Res. Lett. 8:044026. https://doi.org/10.1088/1748-9326/8/4/044026
  8. Cloern JE. 1987. Turbidity as a control on phytoplankton biomass and productivity in estuaries. Cont. Shelf. Res. 7:1367-1381. https://doi.org/10.1016/0278-4343(87)90042-2
  9. Cloern JE. 2018. Why large cells dominate estuarine phytoplankton. Limnol. Oceanogr. 63:S392-S409. https://doi.org/10.1002/lno.10749
  10. Cloern JE, S Foster and A Kleckner. 2014. Phytoplankton primary production in the world's estuarine-coastal ecosystems. Biogeosciences 11:2477-2501. https://doi.org/10.5194/bg-11-2477-2014
  11. Glibert PM, A Al-Azri, J Icarus Allen, AF Bouwman, AH Beusen, MA Burford, PJ Harrison and M Zhou. 2018. Key questions and recent research advances on harmful algal blooms in relation to nutrients and eutrophication. pp. 229-259. In: Global Ecology and Oceanography of Harmful Algal Blooms (Glibert PM, E Berdalet, MA Burford, GC Pitcher and M Zhou, eds.). Springer International Publishing AG. Cham, Switzerland. https://doi.org/10.1007/978-3-319-70069-4_12
  12. Gobler CJ, F Koch, Y Kang, DL Berry, YZ Tang, M Lasi, L Walters, L Hall and JD Miller. 2013. Expansion of harmful brown tides caused by the pelagophyte, Aureoumbra lagunensis DeYoe et Stockwell, to the US east coast. Harmful Algae 27:29-41. https://doi.org/10.1016/j.hal.2013.04.004
  13. Jones MN. 1984. Nitrate reduction by shaking with cadmium: alternative to cadmium columns. Water Res. 18:643-646. https://doi.org/10.1016/0043-1354(84)90215-x
  14. Kang Y and CK Kang. 2022. Reduced forms of nitrogen control the spatial distribution of phytoplankton communities: The functional winner, dinoflagellates in an anthropogenically polluted estuary. Mar. Pollut. Bull. 177:113528. https://doi.org/10.1016/j.marpolbul.2022.113528
  15. Kang Y and Y Oh. 2021. Different roles of top-down and bottom-up processes in the distribution of size-fractionated phytoplankton in Gwangyang Bay. Water 13:1682. https://doi.org/10.3390/w13121682
  16. Kang Y, CH Moon, HJ Kim, YH Yoon and CK Kang. 2021. Water quality improvement shifts the dominant phytoplankton group from cryptophytes to diatoms in a coastal ecosystem. Front. Mar. Sci. 8:710891. https://doi.org/10.3389/fmars.2021.710891
  17. Kang Y, F Koch and CJ Gobler. 2015. The interactive roles of nutrient loading and zooplankton grazing in facilitating the expansion of harmful algal blooms caused by the pelagophyte, Aureoumbra lagunensis, to the Indian River Lagoon, FL, USA. Harmful Algae 49:162-173. https://doi.org/10.1016/j.hal.2015.09.005
  18. Kang Y, HY Kang, D Kim, YJ Lee, TI Kim and CK Kang. 2019. Temperature-dependent bifurcated seasonal shift of phytoplankton community composition in the coastal water off southwestern Korea. Ocean Sci. J. 54:467-486. https://doi.org/10.1007/s12601-019-0025-7
  19. Kang Y, YH Kang, JK Kim, HY Kang and CK Kang. 2020. Year-to-year variation in phytoplankton biomass in an anthropogenically polluted and complex estuary: A novel paradigm for river discharge influence. Mar. Pollut. Bull. 161:111756. https://doi.org/10.1016/j.marpolbul.2020.111756
  20. Kim BK, MO Lee and SJ Park. 2012. Characteristics of water temperature and salinity variations, and seawater exchange in Gamak Bay. J. Korean Soc. Mar. Environ. Energy 15:101-110. https://doi.org/10.7846/JKOSMEE.2012.15.2.101
  21. Kim CW, EO Kim, HD Jeong, CG Jung, MW Park and SG Son. 2009. Variation of body composition and survival rate according to spawning of Pacific oyster(Crassostrea gigas) in Gamak Bay. Korean J. Fish. Aquat. Sci. 42:481-486. https://doi.org/10.5657/kfas.2009.42.5.481
  22. Kim CW, HJ Oh and YK Shin. 2013. Effects of water temperature on the mass mortality of Pacific oyster, Crassostrea gigas in Gamak Bay. Korean J. Malacol. 29:245-250. https://doi.org/10.9710/kjm.2013.29.3.245
  23. Kim JB, SY Lee, J Yu, YH Choi, CS Jung and PY Lee. 2006. The characteristics of oxygen deficient water mass in Gamak Bay. J. Korean Soc. Mar. Environ. Energy 9:216-224.
  24. Kim JB, JI Park, CG Jung, WJ Choi, WC Lee and YH Lee. 2010. Physicochemical characteristics of seawater in Gamak Bay for a period of hypoxic water mass disappearance. J. Korean Soc. Mar. Environ. Saf. 16:241-248.
  25. Kim SY, SH Jun, YS Lee, YH Lee and BM Kim. 2011. Characteristics of phosphate flux at the sediment-water interface in Gamak Bay during the hypoxic water mass. J. Environ. Sci. Int. 20:1069-1078. https://doi.org/10.5322/JES.2011.20.9.1069
  26. Kim Y, J Jeon, MS Kwak, GH Kim, I Koh and M Rho. 2018. Photosynthetic functions of Synechococcus in the ocean microbiomes of diverse salinity and seasons. PLoS One 13:e0190266. https://doi.org/10.1371/journal.pone.0190266
  27. Kim Y, JH Lee, JJ Kang, JH Lee, HW Lee, CK Kang and SH Lee. 2019. River discharge effects on the contribution of small-sized phytoplankton to the total biochemical composition of POM in the Gwangyang Bay, Korea. Estuar. Coast. Shelf Sci. 226:106293. https://doi.org/10.1016/j.ecss.2019.106293
  28. Kuwata A, K Yamada, M Ichinomiya, S Yoshikawa, M Tragin, D Vaulot and A Lopes dos Santos. 2018. Bolidophyceae, a sister picoplanktonic group of diatoms - a review. Front. Mar. Sci. 5:370. https://doi.org/10.3389/fmars.2018.00370
  29. Kwon HK, SJ Oh and HS Yang. 2011. Ecological significance of alkaline phosphatase activity and phosphatase-hydrolyzed phosphorus in the northern part of Gamak Bay, Korea. Mar. Pollut. Bull. 62:2476-2482. https://doi.org/10.1016/j.marpolbul.2011.07.027
  30. Lee GH. 1992. The pattern of sea water circulation in Kamak Bay. Bull. Korean Soc. Fish. Technol. 28:117-131.
  31. Lee JH, D Lee, JJ Kang, HT Joo, JH Lee, HW Lee, SH Ahn, CK Kang and SH Lee. 2017. The effects of different environmental factors on the biochemical composition of particulate organic matter in Gwangyang Bay, South Korea. Biogeosciences 14:1903-1917. https://doi.org/10.5194/bg-14-1903-2017
  32. Lee KH. 2013. Fisheries and oceanography in Gamak Bay. pp. 9-13. In: Proceedings of the Fall Conference of the Korean Society for Marine Environment and Energy. Chonnam National University. Yeosu, Korea.
  33. Lee KH and KD Cho. 1990. Distributions of the temperature and salinity in Kamak Bay. Korean J. Fish. Aquat. Sci. 23:25-39.
  34. Lee MO, JK Kim and BK Kim. 2020. Past, present, and future for the study of Gamak Bay, Korea. J. Korean Soc. Mar. Environ. Energy 23:148-164. https://doi.org/10.7846/JKOSMEE.2020.23.3.148
  35. Min HS and CH Kim. 2006. Interannual variability and long-term trend of coastal sea surface temperature in Korea. Ocean Polar Res. 28:415-423. https://doi.org/10.4217/opr.2006.28.4.415
  36. Oh HT, DJ Kim, WC Lee, RH Jung, SJ Hong, YS Kang, YW Lee and C Tilburg. 2008a. Composition of phytoplankton in Gamak Bay by CHEMTAX Analyses. J. Environ. Sci. Int. 17:1155-1167. https://doi.org/10.5322/JES.2008.17.10.1155
  37. Oh HT, SM Lee, WC Lee, RH Jung, SJ Hong, NK Kim and C Tilburg. 2008b. Sustainability evaluation for shellfish production in Gamak Bay based on the systems ecology 2. environmental accounting for the improvement of the natural environment based on the EMERGY evaluation. J. Environ. Sci. Int. 17:857-869. https://doi.org/10.5322/JES.2008.17.8.857
  38. Oh SJ, JS Park, YH Yoon and HS Yang. 2009. Variation analysis of phytoplankton communities in northern Gamak Bay, Korea. J. Korean Soc. Mar. Environ. Saf. 15:329-338.
  39. Oksanen J, FG Blanchet, R Kindt, P Legendre, PR Minchin, R O'hara, GL Simpson, P Solymos, MHH Stevens and H Wagner. 2013. Package 'vegan'. Community ecology package, version. 2:1-295.
  40. Paerl HW, NS Hall, BL Peierls and KL Rossignol. 2014. Evolving paradigms and challenges in estuarine and coastal eutrophication dynamics in a culturally and climatically stressed world. Estuaries Coasts 37:243-258. https://doi.org/10.1007/s12237-014-9773-x
  41. Parsons TR, Y Maita and C Lalli. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press. Oxford, UK. pp. 1-173.
  42. Poulton NJ and JL Martin. 2010. Imaging flow cytometry for quantitative phytoplankton analysis - FlowCAM. pp. 47-54. In: Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis. Intergovernmental Oceanographic Commission, UNESCO. Paris.
  43. Price N and P Harrison. 1987. Comparison of methods for the analysis of dissolved urea in seawater. Mar. Biol. 94:307-317. https://doi.org/10.1007/bf00392945
  44. Raven J. 1998. The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Funct. Ecol. 12:503-513. https://doi.org/10.1046/j.1365-2435.1998.00233.x
  45. Rii YM, RR Bidigare and MJ Church. 2018. Differential responses of eukaryotic phytoplankton to nitrogenous nutrients in the North Pacific Subtropical Gyre. Front. Mar. Sci. 5:92. https://doi.org/10.3389/fmars.2018.00092
  46. Roberts EC and J Laybourn-Parry. 1999. Mixotrophic cryptophytes and their predators in the Dry Valley lakes of Antarctica. Freshw. Biol. 41:737-746. https://doi.org/10.1046/j.1365-2427.1999.00401.x
  47. Schlitzer R. 2015. Ocean data view.
  48. Sinha E, A Michalak and V Balaji. 2017. Eutrophication will increase during the 21st century as a result of precipitation changes. Science 357:405-408. https://doi.org/10.1126/science.aan2409
  49. Solic M, D Santic, S Sestanovic, N Bojanic, S Jozic, M Ordulj, A Vrdoljak Tomas and G Kuspilic. 2020. Changes in the trophic pathways within the microbial food web in the global warming scenario: an experimental study in the Adriatic Sea. Microorganisms 8:510. https://doi.org/10.3390/microorganisms8040510
  50. Vonshak A, R Guy and M Guy. 1988. The response of the filamentous cyanobacterium Spirulina platensis to salt stress. Arch. Microbiol. 150:417-420. https://doi.org/10.1007/bf00422279
  51. Wei T, V Simko, M Levy, Y Xie, Y Jin and J Zemla. 2017. Package 'corrplot'. Statistician 56:e24.
  52. Wickham H. 2016. Package 'ggplot2': Elegant Graphics for Data Analysis. Version 3.2. Springer-Verlag. New York.
  53. Worden AZ, JK Nolan and B Palenik. 2004. Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnol. Oceanogr. 49:168-179. https://doi.org/10.4319/lo.2004.49.1.0168
  54. Wu W, B Huang and C Zhong. 2014. Photosynthetic picoeukaryote assemblages in the South China Sea from the Pearl River estuary to the SEATS station. Aquat. Microb. Ecol. 71:271-284. https://doi.org/10.3354/ame01681
  55. Xia X, P Lee, S Cheung, Y Lu and H Liu. 2020. Discovery of euryhaline phycoerythrobilin-containing Synechococcus and its mechanisms for adaptation to estuarine environments. mSystems 5:e00842-00820. https://doi.org/10.1128/msystems.00842-20
  56. Yoo DY, KA Seong, HJ Jeong, W Yih, JR Rho, SW Nam and HS Kim. 2017. Mixotrophy in the marine red-tide cryptophyte Teleaulax amphioxeia and ingestion and grazing impact of cryptophytes on natural populations of bacteria in Korean coastal waters. Harmful Algae 68:105-117. https://doi.org/10.1016/j.hal.2017.07.012
  57. Yoon Y. 2000. Variational characteristics of water quality and chlorophyll-a concentration in the northern Kamak Bay, Southern Korea. J. Korean Environ. Sci. Soc. 9:429-436.