DOI QR코드

DOI QR Code

암석을 천공하는 돌맛조개(Barnea manilensis)의 구조 및 기능

Structural and functional characteristics of rock-boring clam Barnea manilensis

  • 김지영 (국립생태원 생태응용연구실 생태신기술팀) ;
  • 안윤전 (엠에이치에스) ;
  • 김태진 (엠에이치에스) ;
  • 원성민 (국립생태원 생태응용연구실 생태신기술팀) ;
  • 이승원 (국립생태원 생태응용연구실 생태신기술팀) ;
  • 송종원 (국립생태원 생태응용연구실 생태신기술팀) ;
  • 박정은 (국립생태원 생태응용연구실 생태신기술팀)
  • Ji Yeong Kim (Ecological Technology Research Team, Division of Ecological Applications Research, National Institute of Ecology) ;
  • Yun Jeon Ahn (Research & Development Center, MHS Co.) ;
  • Tae Jin Kim (Research & Development Center, MHS Co.) ;
  • Seung Min Won (Ecological Technology Research Team, Division of Ecological Applications Research, National Institute of Ecology) ;
  • Seung Won Lee (Ecological Technology Research Team, Division of Ecological Applications Research, National Institute of Ecology) ;
  • Jongwon Song (Ecological Technology Research Team, Division of Ecological Applications Research, National Institute of Ecology) ;
  • Jeongeun Bak (Ecological Technology Research Team, Division of Ecological Applications Research, National Institute of Ecology)
  • 투고 : 2022.10.27
  • 심사 : 2022.11.14
  • 발행 : 2022.12.31

초록

돌맛조개(Barnea manilensis)는 조간대 하부의 석회암이나 이암 등 무른 암석을 천공하는 이매패류로, 입구는 좁고 안쪽은 넓은 구멍을 만들어 일생을 암석 안에서 서식한다. 본 연구에서는 실체현미경과 FE-SEM (Field Emission Scanning Electron Microscope)을 이용하여 돌맛조개의 형태와 패각의 미세구조를 관찰하였으며, EDS (Energy Dispersive X-ray Spectroscopy) 분석을 통하여 부위별 원소함량을 측정하였다. 또한 3D모델링 및 구조동역학해석을 이용하여 돌맛조개의 천공 행동에 대한 시뮬레이션을 진행하였다. 미세구조 관찰 결과 패각은 상하 비대칭형이고 천공에 직접적으로 관여하는 앞쪽의 패각에는 두드러지게 융기되어 있는 쟁기 모양의 돌기가 일정한 방향성을 가지고 분포되어 있으며, 패각의 두께는 앞쪽이 뒤쪽보다 두꺼운 것으로 나타났다. EDS 결과 패각의 대부분을 차지하는 CaCO3 이외에도 Al, Si, Mn, Fe, Mg 등의 금속 원소가 앞쪽 패각 돌기 외곽에만 첨가된 것으로 보아 이는 패각의 강도를 높여 천공에 유리하게 작용될 것이라 추측된다. 시뮬레이션 결과 패각의 앞쪽과 패각 돌기 중 앞부분에 두드러지게 융기된 돌기가 모든 각도에서 하중을 받는 것을 확인할 수 있었다. 이는 실제로 암석을 천공하며 하중을 받는 부위는 앞쪽 패각 돌기임을 시사한다. 돌맛조개의 비정형 패각을 이용한 천공 기작은 추후 효율적인 천공 메커니즘을 고안하기 위한 기초 데이터로 활용될 것이라 기대된다.

Barnea manilensis is a bivalve which bores soft rocks, such as, limestone or mudstone in the low intertidal zone. They make burrows which have narrow entrances and wide interiors and live in these burrows for a lifetime. In this study, the morphology and the microstructure of the valve of rock-boring clam B. manilensis were observed using a stereoscopic microscope and FE-SEM, respectively. The chemical composition of specific part of the valve was assessed by energy dispersive X-ray spectroscopy (EDS) analysis. 3D modeling and structural dynamic analysis were used to simulate the boring behavior of B. manilensis. Microscopy results showed that the valve was asymmetric with plow-like spikes which were located on the anterior surface of the valve and were distributed in a specific direction. The anterior parts of the valve were thicker than the posterior parts. EDS results indicated that the valve mainly consisted of calcium carbonate, while metal elements, such as, Al, Si, Mn, Fe, and Mg were detected on the outer surface of the anterior spikes. It was assumed that the metal elements increased the strength of the valve, thus helping the B. manilensis to bore sediment. The simulation showed that spikes located on the anterior part of the valve received a load at all angles. It was suggested that the anterior part of the shell received the load while drilling rocks. The boring mechanism using the amorphous valve of B. manilensis is expected to be used as basic data to devise an efficient drilling mechanism.

키워드

과제정보

본 연구는 국립생태원 수탁연구(생태모방 확공용 공법 적용을 위한 생물생태 특성 연구, NIE-수탁연구-2022-39)와 환경부의 재원으로 한국환경산업기술원의 생태모방 기반 환경오염관리 기술개발사업의 지원을 받아 연구되었습니다(2019002800008).

참고문헌

  1. Ansell AD and NB Nair. 1969. A comparative study of bivalves which bore mainly by mechanical means. Amer. Zool. 9:857-868. https://doi.org/10.1093/icb/9.3.857
  2. Bolotov IN, OV Aksenova, T Bakken, CJ Glasby, MY Gofarov, AV Kondakov, ES Konopleva, ML Lima, AA Lyubas, Y Wang, AY Bychkov, AM Sokolova, K Tanmuangpak, S Tumpeesuwan, IV Vikhrev, JB Shyu, T Win and OS Pokrovsky. 2018. Discovery of a silicate rock-boring organism and macrobioerosion in fresh water. Nat. Commun. 9:1-11. https://doi.org/10.1038/s41467-018-05133-4
  3. Broomell CC, MA Mattoni, FW Zok and JH Waite. 2006. Critical role of zinc in hardening of Nereis jaws. J. Exp. Biol. 209:3219-3225. https://doi.org/10.1242/jeb.02373
  4. Denny M and JL Nelson. 2006. Conversations with Marco Polo: The Remarkable Life of Eugene C. Haderlie. Xlibris Corporation. Bloomington, IN.
  5. Distel DL. 2003. The biology of marine wood boring bivalves and their bacterial endosymbionts. pp. 253-271. In: Wood Deterioration and Preservation (Goodell B, DD Nicholas and TP Schultz, eds.). ACS Publications. Washington, D.C.
  6. Dorgan KM. 2015. The biomechanics of burrowing and boring. J. Exp. Biol. 218:176-183. https://doi.org/10.1242/jeb.086983 
  7. Han CG, MC Han and JB Kim. 2007. Engineering properties of the particle classifying cement and the mortar using the particle classifying cement. J. Archit. Inst. Kor. 23:111-118. https://doi.org/10.1155/2018/1763524
  8. Ito Y. 1998. Hinge development and functional morphology in the larvae and early postlarvae of the boring bivalve, Barnea manilensis (Pholadidae). Jpn. J. Malacol. 57:191-207. https://doi.org/10.18941/venusjjm.57.3_191
  9. Jeon MA, MW Park, K Ku, SM Ju, P Ko, BH Kim, JI Myeong and JS Lee. 2012. Gonadal development and reproductive cycle of the boring bivalve Barnea Da Vidi (Deshayes, 1874) in Hampyeong bay, Korea (Bivalvia: Pholadidae). J. Shellfish Res. 31:951-958. https://doi.org/10.2983/035.031.0407
  10. Jung BH, BW Choi, HS Jang and MS Kim. 2000. The characteristic of fresh properties of antiwashout underwater concrete with variation of fly ash. pp. 41-46. In: Proceedings of the Spring Conference of the Korea Concrete Institute. Chung Cheong University. Cheongju,
  11. Kang H, JW Cho, MS Jeong, YJ Cho, SK Lee and JW Lee. 2015. Evaluation of a drill bit button arrangement for enhanced drilling efficiency. Trans. Korean Soc. Mech. Eng. A 39:575-581. https://doi.org/10.3795/KSME-A.2015.39.6.575
  12. Kim JY, JY Park, OC Kwon and JH Kim. 2020. A comparative study of the morphology of the ovipositors of wood-boring insects, Tremex fuscicornis and Leucospis japonica. Korean J. Environ. Biol. 38:554-562. https://doi.org/10.11626/KJEB.2020.38.4.554
  13. Kleemann K. 1996. Biocorrosion by bivalves. Mar. Ecol. 17:145-158. https://doi.org/10.1111/j.1439-0485.1996.tb00496.x
  14. Kwon OG, GM Park and JS Lee. 1993. Coloured Shells of Korea. Academy Publishing Company. Seoul. p. 386.
  15. Nederlof R and M Muller. 2012. A biomechanical model of rock drilling in the piddock Barnea candida (Bivalvia; Mollusca). J. R. Soc. Interface 9:2947-2958. https://doi.org/10.1098/rsif.2012.0329
  16. Owada M. 2007. Functional morphology and phylogeny of the rock-boring bivalves Leiosolenus and Lithophaga (Bivalvia: Mytilidae): a third functional clade. Mar. Biol. 150:853-860. https://doi.org/10.1007/s00227-006-0409-y
  17. Palma P and LN Santhakumaran. 2014. Shipwrecks and Global 'Worming'. Archaeopress. Oxford. 
  18. Park IS and HJ Choi. 2020. Nuclear DNA content determinations in 15 seawater shellfish species in Korea. Korean J. Environ. Biol. 38:343-349. https://doi.org/10.11626/KJEB.2020.38.3.343
  19. Quicke DLJ, P Wyeth, JD Fawke, HH Basibuyuk and JFV Vincent. 1998. Manganese and zinc in the ovipositors and mandibles of hymenopterous insects. Zool. J. Linn. Soc. 124:387-396. https://doi.org/10.1111/j.1096-3642.1998.tb00583.x
  20. Tajima T and Y Kondo. 2003. The relationship between functional shell morphology and nature of the bored substratum in the family Pholadidae (Bivalvia). Fossils 73:5-19. https://doi.org/10.14825/kaseki.73.0_5
  21. Warme JE and NF Marshall. 1969. Marine borers in calcareous terrigenous rocks of the Pacific Coast. Amer. Zool. 9:765-774. https://doi.org/10.1093/icb/9.3.765