DOI QR코드

DOI QR Code

Temperature-dependent developmental model of Echinothrips americanus Morgan(Thysanoptera: Thripidae) on pepper leaf

포인세티아총채벌레(Echinothrips americanus Morgan)의 온도발육모형

  • 공민재 (농촌진흥청 국립농업과학원) ;
  • 김광호 (농촌진흥청 고객지원담당관실) ;
  • 김재군 (농촌진흥청 국립농업과학원) ;
  • 박홍현 (농촌진흥청 국립농업과학원) ;
  • 전성욱 (한국폴리텍대학 전북캠퍼스 농생명바이오시스템과)
  • Received : 2022.11.10
  • Accepted : 2022.12.19
  • Published : 2022.12.31

Abstract

The temperature-dependent development of Poinsettia thrips, Echinothrips americanus was studied at eight constant temperatures (15.0, 17.5, 20.0, 22.5, 25.0, 27.5, 30.0, and 32.5±1℃), 65±5% RH and photoperiod of 16L:8D conditions. The developmental stages were divided into egg, 1st instar, 2nd instar, pre-pupa, pupa, and adult. The total developmental time in the immature stage was 40.4 days at 15.0℃ and 11.6 days at 30.0℃, and it decreased with increasing temperature. The lowest temperature of the whole immature period was 10.7℃, and the cumulative temperature to complete the entire immature period was 217.4 degree days. The optimal development temperature (Topt) for the whole immature stage was estimated to be in the range of 30.51-31.21℃. Topt for each immature stage was 31.64-35.47℃ at egg, 30.02-33.08℃ at 1st instar, 29.16-34.43℃ at 2nd instar, 27.63-29.21℃ at pre-pupa, and 29.81-30.12℃ at pupa. In the analysis of the six non-linear models, Logan 6 model was the most appropriate as Zi(Weighting Factors) was 0.18.

포인세티아총채벌레(Echinothrips americanus)의 온도별 발육은 15.0~32.5±1℃까지 2.5℃ 간격(65±5% RH, 16L : 8D) 8개 온도 조건에서 알, 1령, 2령, 전용, 번데기, 성충으로 구분하여 조사하였다. 전체 발육기간은 25.0℃ 이상의 온도 조건에서는 온도가 증가할수록 발육기간은 짧아지는 경향을 보였다. 온도별 발육기간은 15.0℃에서 40.4일, 30.0℃에서는 11.6일로 고온으로 갈수록 발육기간은 짧아졌으나, 32.5℃에서는 발육기간이 다시 길어져 12.5일 이었다. 선형모형을 이용한 전체 발육기간의 발육영점온도는 10.7℃, 유효적산온도는 217.4일도였다. 비선형발육모형을 이용한 최적발육온도(Topt) 범위는 알은 31.64~35.47℃, 1령의 30.02~33.08℃, 2령은 29.16~34.43℃, 전용은 27.63~29.21℃, 번데기는 29.81~30.12℃, 전체 발육 기간은 30.51~31.21℃였다. 비선형발육모형에 대한 가중치 지표(Zi)는 Logan 6모형이 0.18로 가장 적합하였다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 '농작물 난방제 병해충 발생 예측모형 개발(과제번호: PJ015111)' 과제의 지원으로 수행되었음.

References

  1. Abbas A and RM Mark. 2011. Determining suitability of thermal development models to estimate temperature parameters for embryonic development of Sitona lepidus Gyll. (Coleoptera: Curculionidae). J. Pest Sci. 84:303-311. https://doi.org/10.1007/s10340-011-0360-7
  2. Ahn KS, KY Lee, SK Park, GS Lee and GH Kim. 2003. Effects of temperatures on development and reproduction of Dichromothrips smithi (Thysanoptera: Thripidae). Korean J. Appl. Entomol. 42:211-216.
  3. Ali Niazee MT. 1976. Thermal unit requirements for determining adult emergence of the western cherry fruit fly in the Willamatte Valley of Oregon. Environ. Entomol. 5:397-401. https://doi.org/10.1093/ee/5.3.397
  4. Briere JF and P Pracros. 1998. Comparison of temperature-dependent growth models with the development of Lobesia botrana (Lepidoptera : Tortricidae). Environ. Entomol. 27:94-101. https://doi.org/10.1093/ee/27.1.94
  5. Briere JF, P Pracros, AY Le Roux and JS Pierre. 1999. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28:22-29. https://doi.org/10.1093/ee/28.1.22
  6. Butts RA and FL McEwen. 1981. Seasonal populations of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), in relation to day-degree accumulation. Can. Entomol. 113:127-131. https://doi.org/10.4039/Ent113127-2
  7. Campbell A, BD Frazer, N Gilbert, AP Gutierrez and M Markauer. 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11:431-438. https://doi.org/10.2307/2402197
  8. Cho MR, HY Jeon and SY Na. 2000. Occurrence of Frankliniella occidentalis and Tetranychus urticae in rose greenhouse and effectiveness of different control methods. J. Bio-Environ. Control 9:179-184.
  9. Collins DW. 1998. Recent interceptions of Echinothrips americanus Mogan(Thysanoptera, Thripidae) imported into England. Entomol. Mon. Mag. 134:1-3. https://agris.fao.org/agris-search/search.do?recordID=GB1997040113
  10. Curry GL and RM Feldman. 1987. Mathematical Foundations of Population Dynamics. Texas A & M University Press. College Station, TX. p. 246. https://agris.fao.org/agris-search/search.do?recordID=US8936361
  11. Damos P and M Savopoulou-Soultani. 2012. Temperature-driven models for insect development and vital thermal requirements. Psyche 2012:1-13. http://doi.org/10.1155/2012/123405
  12. Eckenrode CK and RK Chapman. 1972. Seasonal adult cabbage maggot populations in the field in relation to thermal unit accumulations. Ann. Entomol. Soc. Amer. 65:151-156. https://doi.org/10.1093/aesa/65.1.151
  13. Fand BB, NT Sul, SK Bal and PS Minhas. 2015. Temperature impacts the development and survival of common cutworm (Spodoptera litura): Simulation and visualization of potential population growth in India under warmer temperatures through life cycle modelling and spatial mapping. PLoS One 10:e124682. https://doi.org/10.1371/journal.pone.0124682
  14. Gitonga LM, B Lohr, WA Overholt, JK Magambo and JM Mueke. 2002. Temperature-dependent development of Megalurothrips sjostedti and Frankliniella occidentalis (Thysanoptera: Thripidae). Afr. Entomol. 10:325-331.
  15. Han JH, HJ Jeong, MR Lee, SN Choi, DY Kim, SH Ahn and JW Park. 2020. Insecticidal effect of entomopathogenic fungus, Isaria fumosorosea FG340 to Thrips palmi. Korean J. Pestic. Sci. 24:374-380. https://doi.org/10.7585/kjps.2020.24.4.374
  16. Houser JS, TL Guyton and PR Lowry. 1917. The pink and green aphid of potato. Ohio Agric. Exp. Stn. Bull. 317:60-88. https://doi.org/10.1093/ee/24.1.68
  17. Hwang RY, JW Hyun and DS Kim. 2013. Models of forecasting the generation peak time of Scirtothrips dorasalis (Thysanoptera: Thripidae) adults based on degree-days on Jeju Island, Korea. Korean J. Appl. Entomol. 52:415-425. https://doi.org/10.5656/KSAE.2013.11.0.076
  18. Itoh K, A Oguri and A Suzuki. 2003. Occurrence and control of insect pests in perilla on Aichi Prefecture. pp. 71-72. In: Proceedings of the Kansai Plant Protection Society. The Kansai Plant Protection Society.
  19. Jeon SJ and SK Kim. 2019. Integrated pest management strategies for controlling onion thrips of asparagus in Gangwon Province, Korea. J. Agric. Life Environ. Sci. 31:72-80. https://doi.org/10.22698/jales.20190009
  20. Jeon SW, KH Kim, SG Lee, YH Lee, SK Park, WS Kang, BY Park and KK Kim. 2019. Temperature-dependent developmental models and fertility life table of the potato aphid Macrosiphum euphorbiae Thomas on eggplant. Korean J. Environ. Biol. 37:568-578. https://doi.org/10.11626/KJEB.2019.37.4.568
  21. Kennedy JS, MF Day and VF Eastop. 1962. A Conspectus of Aphids as Vectors of Plant Viruses. Commonwealth Institute of Entomology. London.
  22. Kim CY, GM Gwon and YG Kim. 2021. Limitation in attraction efficacy of aggregation pheromone or plant volatile lures to attract the western flower thrips, Frankliniella occidentalis infesting the hot pepper, Capsicum annuum, in greenhouses. Korean J. Appl. Entomol. 60:369-377. https://doi.org/10.5656/KSAE.2021.10.0.042
  23. Kim DI, DS Chio, SJ Ko, BR Kang, CG Park, SG Kim, JD Park and SS Kim. 2012. Comparison of development times of Myzus persicae (Hemiptera: Aphididae) between the constant and variable temperatures and its temperature and its development models. Korean J. Appl. Entomol. 51:431-438. https://doi.org/10.5656/KSAE.2012.10.0.032
  24. Kim JS, TH Kim, JH Kim, YW Byeon and KH Kim. 2004. Temperature-dependent development and its model of the melon aphid, Aphis gossypii Glover (Homoptera: Aphididae). Korean J. App. Entomol. 43:111-116.
  25. Kontodimas DC, PA Eliopoulos, GJ Stathas and LP Economou. 2004. Comparative temperature-dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae), prying on Planococcus citri(Risso) (Homoptera: Pseudococcidae): evaluation of a linear and various non-linear models using specific criteria. Environ. Entomol. 33:1-11. https://doi.org/10.1603/0046-225X-33.1.1
  26. Lactin DJ, NJ Holliday, DI Johnson and R Craigen. 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24:68-75. https://doi.org/10.1093/ee/24.1.68
  27. Li, XW, XC Zhang, HX Jiang and JN Feng. 2012. Comparisons of developmental and reproductive biology between parthenogenetic and sexual Echinothrips americanus (Thysanoptera: Thripidae). Environ. Entomol. 41:706-713. https://doi.org/10.1603/EN11325
  28. Liang Z, ZH Wang, YJ Gong, LJ Cao and SJ Wei. 2017. Eeffct of temperature on the development of Echinothrips americanus Morgan (Thysanoptera: Thripidae) with special reference to the number of generations. J. Asia-Pac. Entomol. 20:1197-1203. https://doi.org/10.1016/j.aspen.2017.09.002
  29. Logan JA, DJ Wolkind, SC Hoyt and LK Tanigoshi. 1976. An analytical model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5:1133-1140. https://doi.org/10.1093/ee/5.6.1133
  30. Manzer FE, DC Merriam, RH Storch and JWM Simpson. 1982. Effect of time inoculation with potato leaf-roll virus on potato tubers. Am. Potato J. 59:347-349.
  31. McDonald JR, JS Bale and KFA Walters. 1998. Effect of temperature on development of the Western Flower Thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Eur. J. Entomol. 95:301-306.
  32. Mirab-Balou M, H Lu and XX Chen. 2010. First record of Echinothrips americanus Morgan (Thysanoptera, Thripidae) in Mainland China, with notes on distribution and host plants. Acta Zootaxon. Sin. 35:674-679.
  33. Moon HC, MK Choi, SJ Jang, JH Lee, JH Kim and HG Chon. 2022. The effect of temperature on the development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Korean J. Appl. Entomol. 61:349-356. https://doi.org/0.5656/KSAE.2022.04.0.023
  34. Mound LA. 2000. The aquatic thrips Organothrips indicus Bhatti (Thysanoptera: Thripidae) in Queensland, and a new species, O. wrighti, from tropical Australia Aus. J. Entomol. 39:10-14. https://doi.org/10.1046/j.1440-6055.2000.00136.x
  35. Oetting RD. 1987. Echinothrips americanus, a thrips of increased significance on ornamentals. pp. 194-195. In: Proceedings of the 32nd Southern Nurserymen Association Research Conference.
  36. Oetting RD and RJ Beshear. 1993. Biology of the greenhouse pest Echnothrips americanus Morgan (Thysanoptera: Thripidae). J. Pure Appl. Zool. 4:307-315.
  37. Park CG, HH Park, KB Uhm and JH Lee. 2010a. Temperature-dependent development model of Paromius exiguus(Distant) (Heteroptera: Lygaeidae). Korean J. Appl. Entomol. 49:305-312. https://doi.org/10.5656/KSAE.2010.49.4.305
  38. Park CG, HY Kim and JH Lee. 2010b. Parameter estimation for a temperature-dependent development model of Thrips palmi Karny (Thysanoptera: Thripidae). J. Asia-Pac. Entomol. 13:145-149. https://doi.org/10.1016/j.aspen.2010.01.005
  39. Roy M, J Brodeur and C Cloutier. 2002. Relationship between temperature and developmental rate of Sterhorus punctillum (Coleoptera: Coccinellidae). Environ. Entomol. 31:177-187. https://doi.org/10.1603/0046-225X-31.1.177
  40. Salazar LF. 1996. Potato Viruses and Their Control. International Potato Center, Lima, Peru. p. 216.
  41. SAS Institute. 2016. SAS Enterprise Version 7.1. Cary, N.C.
  42. Schoolfield RM, PJH Sharpe and CE Mugnuson. 1981. Nonlinear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 66:21-38. https://doi.org/10.1016/0022-5193(77)90309-5
  43. Tamotsu M. 2000. Effect of temperature on development and reproduction of the onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), on pollen and honey solution. Appl. Entomol. Zool. 35: 499-504. https://doi.org/10.1303/aez.2000.499
  44. Varga L, PJ Fedor, M Suvak, J Kisel'ak and E Atakan. 2010. Larval and adult food preferences of the poinsettia thrips Echinothrips americanus Morgan, 1913 (Thysanoptera: Thripidae). J. Pest. Sci. 83:319-327. https://doi.org/10.1007/s10340-010-0301-x
  45. Vierbergen G, M Sommeijer and P Francke. 1998. Echinothrips americanus Morgan, a new thrips in Dutch greenhouses (Thysanoptera: Thripidae). pp. 155-160. In: Proceedings of the Section Experimental and Applied Entomology of the Netherlands. Nederlandse Entomologische Vereniging. Amsterdam.
  46. Wagner TL, H Wu, PJH Sharpe and RN Coulson. 1984a. Modeling distribution of insect development time: A literature review and application of Weibull function. Ann. Entomol. Soc. Am. 77:475-487. https://doi.org/10.1093/aesa/77.5.475
  47. Wagner TL, H Wu, PJH Sharpe, RM Schoolfield and RN Coulson. 1984b. Modeling insect development rate: A literature review and application of a biophysical model. Ann. Entomol. Soc. Am. 77:208-225. https://doi.org/10.1093/aesa/77.2.208
  48. Walgenbach JF. 1997. Effect of potato aphid (Homoptera: Aphididae) on yield, quality, and economics of staked-tomato production. J. Econ. Entomol. 90: 996-1004. https://doi.org/10.1093/jee/90.4.996
  49. Yoon JB, YS Cho, CY Yang and MH Seo. 2020. Insecticide susceptibility on developmental stages of Frankliniella occidentalis in chrysnthemum cultivation. Korean J. Pestic. Sci. 24:148-155. https://doi.org/10.7585/kjps.2020.24.2.148