DOI QR코드

DOI QR Code

Effect of plasma treatment using underwater non-thermal dielectric barrier discharge to remove antibiotics added to fish farm effluent

양식장 배출수에 첨가된 항생제 제거 위한 수중 비열 유전체장벽 방전 플라즈마 처리 효과

  • Received : 2022.12.03
  • Accepted : 2022.12.30
  • Published : 2022.12.31

Abstract

The purpose of this study was to compare the efficiency of air and oxygen injected into the underwater non-thermal dielectric barrier discharge plasma (DBD plasma) device used to remove five types of antibiotics (tetracycline, doxycycline, oxytetracycline, clindamycin, and erythromycin) artificially contained in the fish farm discharge water. The voltage given to generate DBD plasma was 27.8 kV, and the measurement intervals were 0, 0.5, 1, 2, 4, 8, 16 and 32 minutes. Tetracycline antibiotics significantly decreased in 4 minutes when air was injected and were reduced in 30 seconds when oxygen was injected. After the introduction of air and oxygen at 32 minutes, 78.1% and 95.8% of tetracycline were removed, 77.1% and 96.3% of doxycycline were removed, and 77.1% and 95.5% of oxytetracycline were removed, respectively. In air and oxygen, 59.6% and 83.0% of clindamycin and 53.3% and 74.3% of erythromycin were removed, respectively. The two antibiotics showed lower removal efficiency than tetracyclines. In conclusion, fish farm discharge water contains five different types of antibiotics that can be reduced using underwater DBD plasma, and oxygen gas injection outperformed air in terms of removal efficiency.

본 연구의 목적은 양식장 배출수 내에 포함된 5종의 항생제(tetracycline, doxycycline, oxytetracycline, clindamycin 및 erythromycin)를 제거하기 위해 사용한 수중 비열 유전체장벽 방전 플라즈마(Dielectric Barrier Discharge plasma, DBD plasma) 장치 안으로 공기와 산소를 각각 주입했을 때 항생제의 제거효율을 비교하는 것이다. DBD plasma를 발생시키기 위해서 주어진 전압은 27.8 kV이었고, 처리간격은 0, 0.5, 1, 2, 4, 8, 16 및 32분이었다. 3종의 tetracycline계 항생제는 공기를 주입했을 때는 4분만에 유의하게 감소하였고, 산소를 주입했을 때는 30초만에 유의성을 나타내었다. 32분째 공기와 산소를 각각 주입한 결과, tetracycline은 78.1%와 95.8%, doxycycline은 77.1%와 96.3% 그리고 oxytetracycline은 77.1%와 95.5% 감소하였다. Clindamycin은 공기를 주입했을 때 59.6%가 감소되었고, 산소는 83.0% 감소되었다. 또한, erythromycin은 공기주입 시 53.3%가 감소되었고 산소 주입 시 74.3%가 감소하여 두 항생제 모두 tetracycline계 항생제보다 낮은 제거 효율을 보였다. 결론적으로 수중 DBD plasma는 양식장 배출수 내에 포함된 5종의 항생제를 감소시킬 수 있고, 제거 효율은 공기보다 산소를 주입하는 것이 더 효과적이다.

Keywords

References

  1. Ash RJ, B Mauck and M Morgan. 2002. Antibiotic resistance of gram-negative bacteria in rivers, United States. Emerg. Infect. Dis. 8:713-716. https://doi.org/10.3201/eid0807.010264
  2. Braithwaite NSJ. 2000. Introduction to gas discharges. Plasma Sources Sci. Technol. 9:517. https://doi.org/10.1088/0963-0252/9/4/307
  3. Conrads H and M Schmidt. 2000. Plasma generation and plasma sources. Plasma Sources Sci. Technol. 9:441. https://doi.org/10.1088/0963-0252/9/4/301
  4. Cook M, E Moloto and C Anerson. 1989. Fluorochrome labelling in roman period skeletons from Dakhleh oasis, Egypt. Am. J. Phys. Anthropol. 80:137-143. https://doi.org/10.1002/ajpa.1330800202
  5. Fang C, S Wang, H Xu and Q Huang. 2022. Degradation of tetracycline by atmospheric pressure non-thermal plasma: Enhanced performance, degradation mechanism, and toxicity evaluation. Sci. Total Environ. 812:15. https://doi.org/10.1016/j.scitotenv.2021.152455
  6. Feng J, Z Zheng, Y Sun, J Luan, Z Wang, L Wang and J Feng. 2008. Degradation of diuron in aqueous solution by dielectric barrier discharge. J. Hazard. Mater. 154:1081-1089. https://doi.org/10.1016/j.jhazmat.2007.11.013
  7. Gushchin A, VI Grinevich, GI Gusev and EY Kvitkova. 2018. Removal of oil products from water using a combined process of sorption and plasma exposure to DBD. Plasma Chem. Plasma Process. 38:1021-1033. https://doi.org/10.1007/s11090-018-9912-4
  8. Haixia W, F Zhi and X Yanhua. 2015. Degradation of aniline wastewater using dielectric barrier discharges at atmospheric pressure. Plasma Sources Sci. Technol. 17:228-234. https://doi.org/10.1088/1009-0630/17/3/10
  9. Hwang IG. 2011. International Cooperation for Controlling Foodborne Antimicrobial Resistance. National Institute of Food and Drug Safety Evaluation. Cheongju, Korea.
  10. Iwane T, T Urase and K Yamamoto. 2001. Possible impact of treated wastewater discharge on incidence of antibiotic resistant bacteria in river water. Water Sci. Technol. 43:91-99. https://doi.org/10.2166/wst.2001.0077
  11. Jin G, G Pingdao, Y Li and Z Fangchuan. 2013. Degradation of dye wastewater by ns-pulse DBD plasma. Plasma Sources Sci. Technol. 15:928. https://doi.org/10.1088/1009-0630/15/9/18
  12. Jo JO, SB Lee and YS Mok. 2013. Decolorization of Azo dyeing wastewater using underwater dielectric barrier discharge plasma. Appl. Chem. Eng. 24:544-550.
  13. Joshi RP and SM Thagard. 2013. Streamer-like electrical discharges in water: Part II. Environmental applications. Plasma Chem. Plasma Process. 33:17-49. https://doi.org/10.1007/s11090-013-9436-x
  14. Jovic MS, BP Dojcinovic, VV Kovacevic, BM Obradovic, MM Kuraica, UM Gasic and GM Roglic. 2014. Effect of different catalysts on mesotrione degradation in water falling film DBD reactor. Chem. Eng. J. 248:63-70. https://doi.org/10.1016/j.cej.2014.03.031
  15. Kim DY. 2009. A study on the development of eco-plasma system and advanced wastewater treatment. MS Thesis, Seoul National University of Technology. Seoul. pp. 1-81.
  16. Kim ES. 2010. Oral antimicrobial therapy. Korean J. Med. 78:575-578.
  17. Kim JH, CK Park, MY Kim and SG Ahn. 2008. Contamination of veterinary antibiotics and antimicrobials in Han River Basin. J. Korean Soc. Environ. Anal. 11:109-118.
  18. Kim KY, NW Paik, YH Kim and KH Yoo. 2018. Bactericidal efficacy of non-thermal DBD plasma on Staphylococcus aureus and Escherichia coli. J. Korean Soc. Occup. Environ. Hyg. 28:61-79. https://doi.org/10.15269/JKSOEH.2018.28.1.61
  19. Kim S, JN Jensen, DS Aga and AS Weber. 2007. Tetracycline as a selector for resistant bacteria in activated sludge. Chemosphere 66:1643-1651. https://doi.org/10.1016/j.chemosphere.2006.07.066
  20. Kim SD, TH Hwang, SY Kim, SW Kim, CH Lim, HJ Song, CS Yang, KS Kim, DY Chang and DI Jang. 2011. Studies on Destruction of Refractory Organic Matter using Dielectric Barrier Discharging System. NIER-RP2011-1325. National Institute of Environmental Research. Incheon, Korea. pp. 1-33.
  21. Kim SK. 2013. A study on characteristics of antibiotics degradation using dielectric barrier discharge plasma reactor. MS Thesis, Jeju National University. Jeju, Korea. pp. 1-156.
  22. Lee HR, MH Chae, CG Lee, BJ Lim, JH Kim, YH Cho, SH Hong, JJ Lee, JH Yoon, JY Yoon, SU Kim, JY Mang, EA Tae, KG Min, HY Yoon, GB Kil, BN Seol, JY Choe and SU Cheon. 2018. Monitoring of Pharmaceutical Residues in Water Samples from the Livestock Area (I). Geum River Water Environment Research Center, National Institute of Environmental Research. Okcheon, Korea. pp. 1-33.
  23. Locke BR, M Sato, P Sunka, MR Hoffmann and JS Chang. 2006. Electrohydraulic discharge and nonthermal plasma for water treatment. Ind. Eng. Chem. Res. 45:882-905. https://doi.org/10.1021/ie050981u
  24. Magureanu M, D Piroi, F Gherendi, NB Mandache and V Parvulescu. 2008. Decomposition of methylene blue in water by corona discharges. Plasma Chem. Plasma Process. 28:677-688. https://doi.org/10.1007/s11090-008-9155-x
  25. Misra N, S Pankaj, T Walsh, F O'Regan, P Bourke and P Cullen. 2014. In-package nonthermal plasma degradation of pesticides on fresh produce. J. Hazard. Mater. 271:33-40. https://doi.org/10.1016/j.jhazmat.2014.02.005
  26. Mok YS, JO Jo, HJ Lee, HT Ahn and JT Kim. 2007. Application of dielectric barrier discharge reactor immersed in wastewater to the oxidative degradation of organic contaminant. Plasma Chem. Plasma Process. 27:51-64. https://doi.org/10.1007/s11090-006-9043-1
  27. Nguyen PTT, HT Nguyen, UNP Tran and HM Bui. 2021. Removal of antibiotics from real hospital wastewater by cold plasma technique. J. Chem. 2021:9981738. https://doi.org/10.1155/2021/9981738
  28. Park YS. 2013. Phenol removal using oxygen-plasma discharge in the water. J. Environ. Sci. Int. 22:915-923. https://doi.org/10.5322/JESI.2013.22.7.915
  29. Pekarek S. 2003. Non-thermal plasma ozone generation. Acta Polytech. 43:47-51. https://doi.org/10.14311/498
  30. Salyers AA, A Gupta and Y Wang. 2004. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol. 12:412-416. https://doi.org/10.1016/j.tim.2004.07.004
  31. Sarangapani C, N Misra, V Milosavljevic, P Bourke, F O'Regan and P Cullen. 2016. Pesticide degradation in water using atmospheric air cold plasma. J. Water Process Eng. 9:225-232. https://doi.org/10.1016/j.jwpe.2016.01.003
  32. Sato M, T Tokutake, T Ohshima and AT Sugiarto. 2008. Aqueous phenol decomposition by pulsed discharge on the water surface. IEEE Trans. Ind. Appl. 44:1397-1402. https://doi.org/10.1109/TIA.2008.2002210
  33. Schar D, EY Klein, R Laxmnarayan, M Gilbert and TPV Boeckel. 2020. Global trends in antimicrobial use in aquaculture. Sci. Rep. 10:1-9. https://doi.org/10.1038/s41598-020-78849-3
  34. Shin GW, SK Choi, SK Kim, Q Zhu, KG Weon and SI Lee. 2019. Characteristics of phenol degradation by suing underwater dielectric barrier discharge plasma. J. Korean Soc. Water Wastew. 33:243-250. https://doi.org/10.11001/jksww.2019.33.4.243
  35. Sim WJ, JW Lee and JE Oh. 2010. Occurrence and fate of pharmaceuticals in wastewater treatment plants and rivers in Korea. Environ. Pollut. 158:1938-1947. https://doi.org/10.1016/j.envpol.2009.10.036
  36. Stratton GR, CL Bellona, F Dai, TM Holsen and SM Thagard. 2015. Plasma -based water treatment: Conception and application of a new general principle for reactor design. Chem. Eng. J. 273:543-550. https://doi.org/10.1016/j.cej.2015.03.059
  37. Sun MY, JO Jo and HJ Lee. 2008. Dielectric barrier discharge plasma-induced photocatalysis and ozonation for the treatment of wastewater. Plasma Sci. Technol. 10:100-105. https://doi.org/10.1088/1009-0630/10/1/21
  38. Wardenier N, P Vanraes, A Nikiforov, SW van Hulle and C Leys. 2019. Removal of micropollutants from water in a continuous-flow electrical discharge reactor. J. Hazard. Mater. 362:238-245. https://doi.org/10.1016/j.jhazmat.2018.08.095
  39. Woodward KN. 1996. The regulation of fish medicines-UK and European Union aspects. Aquac. Res. 27:725-734. https://doi.org/10.1046/j.1365-2109.1996.00782.x
  40. Yao X, JS Guo and YT Zhang. 2022. Unveiling pathways of oxytetracycline degradation induced by cold atmospheric plasma. AIP Adv. 12:1-10. https://doi.org/10.1063/5.0085605
  41. Zhang JJ, TH Kwon, SB Kim and DK Jeong. 2018. Plasma farming: Non-thermal dielectric barrier discharge plasma technology for improving the growth of soybean sprouts and chickens. Plasma 1:285-296. https://doi.org/10.3390/plasma1020025