DOI QR코드

DOI QR Code

Alignment of Metal Halide Perovskite Nanowires and Their Application in Photodetectors

금속 할라이드 페로브스카이트 나노와이어의 광 센서 소자 응용

  • Sihn, Moon Ryul (Department of Materials Science and Engineering, Chungnam National University) ;
  • Choi, Jihoon (Department of Materials Science and Engineering, Chungnam National University)
  • 신문렬 (충남대학교 신소재공학과) ;
  • 최지훈 (충남대학교 신소재공학과)
  • Received : 2022.05.13
  • Accepted : 2022.06.09
  • Published : 2022.06.27

Abstract

Metal halide perovskite (MHP) nanocrystals (NCs) have emerged as promising materials for various optoelectronic applications including photovoltaics, light-emitting devices, and photodetectors because of their high absorption coefficient, high diffusion length, and photoluminescence quantum yield. However, understanding the morphological evolution of the MHP NCs as well as their controlled assembly into optoelectronic devices is still challenging and will require further investigation of the colloidal chemistry. In this study, we found that the amount of n-octylamine (the capping agent) plays a crucial role in inducing further growth of the MHP NCs into one-dimensional nanowires during the aging process. In addition, we demonstrate that the dielectrophoresis process can permit self-alignment of the MHP nanowires with uniform distribution and orientation on interdigitated electrodes. A strong light-matter interaction in the MHP NWs array was observed under UV illumination, indicating the photo-induced activation of their luminescence and electrical current in the self-aligned MHP nanowire arrays.

Keywords

Acknowledgement

This work was supported by research fund of Chungnam National University.

References

  1. J. Huang, Y. Yuan, Y. Shao and Y. Yan, Nat. Rev. Mater., 2, 17042 (2017). https://doi.org/10.1038/natrevmats.2017.42
  2. S. D. Stranks and H. J. Snaith, Nat. Nanotechnol., 10, 391 (2015). https://doi.org/10.1038/nnano.2015.90
  3. K. Lin, J. Xing, L. N. Quan, F. P. G. De Arquer, X. Gong, X. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. Xiong and Z. Wei, Nature, 562, 245 (2018). https://doi.org/10.1038/s41586-018-0575-3
  4. H. Cho, S. H. Jeong, M. H. Park, Y. H. Kim, C. Wolf, C. L. Lee, J. H. Heo, A. Sadhanala, N. S. Myoung, S. Yoo, S. H. Im, R. H. Friend and T. W. Lee, Science, 350, 1222 (2015). https://doi.org/10.1126/science.aad1818
  5. B. Zhao, Y. Lian, L. Cui, G. Divitini, G. Kusch, E. Ruggeri, F. Auras, W. Li, D. Yang, B. Zhu, R. A. Oliver, J. L. MacManus-Driscoll, S. D. Stranks, D. Di and R. H. Friend, Nat. Electron., 3, 704 (2020). https://doi.org/10.1038/s41928-020-00487-4
  6. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, Nano Lett., 13, 1764 (2013). https://doi.org/10.1021/nl400349b
  7. L. C. Schmidt, A. Pertegas, S. Gonzalez-Carrero, O. Malinkiewicz, S. Agouram, G. M. Espallargas, H. J. Bolink, R. E. Galian and J. Perez-Prieto, J. Am. Chem. Soc., 136, 850 (2014). https://doi.org/10.1021/ja4109209
  8. J. Shamsi, A. S. Urban, M. Imran, L. De Trizio and L. Manna, Chem. Rev., 119, 3296 (2019). https://doi.org/10.1021/acs.chemrev.8b00644
  9. A. Kirakosyan, J. Kim, S. W. Lee, I. Swathi, S. G. Yoon and J. Choi, Cryst. Growth Des., 17, 794 (2017). https://doi.org/10.1021/acs.cgd.6b01648
  10. A. Kirakosyan, Y. Kim, M. R. Sihn, M.-G. Jeon, J.-R. Jeong and J. Choi, ChemNanoMat, 6, 1863 (2020). https://doi.org/10.1002/cnma.202000471
  11. A. Kirakosyan, N. D. Chinh, M. R. Sihn, M. G. Jeon, J. R. Jeong, D. Kim, J. H. Jang and J. Choi, J. Phys. Chem. Lett., 10, 4222 (2019). https://doi.org/10.1021/acs.jpclett.9b01587
  12. S. Yun, A. Kirakosyan, S.-G. Yoon and J. Choi, ACS Sustainable Chem. Eng., 6, 3733 (2018). https://doi.org/10.1021/acssuschemeng.7b04092
  13. M. R. Sihn, A. Kirakosyan, M.-G. Jeon and J. Choi, ChemComm, 57, 5055 (2021).
  14. A. Kirakosyan, M.-G. Jeon, C.-Y. Kim, Y. Kim and J. Choi, CrystEngComm, 23, 4434 (2021). https://doi.org/10.1039/D1CE00518A
  15. A. Kirakosyan, S. Yun, S.-G. Yoon and J. Choi, Nanoscale, 10, 1885 (2018). https://doi.org/10.1039/c7nr06547g
  16. M. G. Jeon, Yun. S, Kirakosyan. M. R. Sihn, S.-G. Yoon and J. Choi, ACS Sustainable Chem. Eng., 7, 19369 (2019). https://doi.org/10.1021/acssuschemeng.9b03153
  17. E. M. Freer, O. Grachev, X. Duan, S. Martin and D. P. Stumbo, Nat. Nanotechnol., 5, 525 (2010). https://doi.org/10.1038/nnano.2010.106
  18. S. Raychaudhuri, S. A. Dayeh, D. Wang and E. T. Yu, Nano Lett., 9, 2260 (2009). https://doi.org/10.1021/nl900423g
  19. S. Govinda, B. P. Kore, M. Bokdam, P. Mahale, A. Kumar, S. Pal, B. Bhattacharyya, J. Lahnsteiner, G. Kresse, C. Franchini, A. Pandey and D. D. Sarma, J. Phys. Chem. Lett., 8, 4113 (2017). https://doi.org/10.1021/acs.jpclett.7b01740