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Original Article 
The purpose of this study is to systematically determine an optimal percentile cut-
off in histogram analysis for calculating the mean parameters obtained from a non-
Gaussian continuous-time random-walk (CTRW) diffusion model for differentiating 
individual glioma grades. This retrospective study included 90 patients with 
histopathologically proven gliomas (42 grade II, 19 grade III, and 29 grade IV). We 
performed diffusion-weighted imaging using 17 b-values (0-4000 s/mm²) at 3T, 
and analyzed the images with the CTRW model to produce an anomalous diffusion 
coefficient (Dm) along with temporal (α) and spatial (β) diffusion heterogeneity 
parameters. Given the tumor ROIs, we created a histogram of each parameter; 
computed the P-values (using a Student’s t-test) for the statistical differences in 
the mean Dm, α, or β for differentiating grade II vs. grade III gliomas and grade III 
vs. grade IV gliomas at different percentiles (1% to 100%); and selected the highest 
percentile with P < 0.05 as the optimal percentile. We used the mean parameter 
values calculated from the optimal percentile cut-offs to do a receiver operating 
characteristic (ROC) analysis based on individual parameters or their combinations. 
We compared the results with those obtained by averaging data over the entire 
region of interest (i.e., 100th percentile). We found the optimal percentiles for Dm, 
α , and β to be 68%, 75%, and 100% for differentiating grade II vs. III and 58%, 
19%, and 100% for differentiating grade III vs. IV gliomas, respectively. The optimal 
percentile cut-offs outperformed the entire-ROI-based analysis in sensitivity (0.761 
vs. 0.690), specificity (0.578 vs. 0.526), accuracy (0.704 vs. 0.639), and AUC (0.671 vs. 
0.599) for grade II vs. III differentiations and in sensitivity (0.789 vs. 0.578) and AUC 
(0.637 vs. 0.620) for grade III vs. IV differentiations, respectively. Percentile-based 
histogram analysis, coupled with the multi-parametric approach enabled by the 
CTRW diffusion model using high b-values, can improve glioma grading. 
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INTRODUCTION

Gliomas are the most common primary intracranial 
neoplasm, with a broad range of clinical manifestations. 
According to the 2016 WHO central nervous system (CNS) 
tumor classifications (1), gliomas are classified into four 
grades ranging from grade I to grade IV, with increasing 
aggressiveness and malignancy. Traditionally, grade I 
and II gliomas are termed low grade; and have a better 
prognosis. Grade III and IV gliomas, on the other hand, are 
considered high -grade because of their invasiveness and 
poor prognosis (2). The WHO classifications of gliomas have 
always included grading as a malignancy scale, even with 
the recent introduction of robust molecular markers, such as 
isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2), 1p/19q, 
and O[6]-methylguanine-DNA methyltransferase (MGMT) 
(1, 3). Traditional grading combined with modern molecular 
markers can account for differences in the biological 
properties of gliomas, providing valuable information about 
prognoses and responses to therapies. 

The current gold standard for glioma grading is based 
on histopathologic and molecular evaluation of surgical 
biopsy or resection specimens (1). Over the past decades, 
magnetic resonance imaging (MRI) has been widely 
used for the preoperative assessment of gliomas due to 
their ability to noninvasively evaluate the entire spatial 
extent of the lesion, including the adjacent brain tissues. 
Besides morphologic, perfusion, and/or spectroscopic 
MRI sequences, diffusion-weighted MRI (DWI) has been 
increasingly incorporated into the clinical MRI protocols for 
assessing gliomas to improve the diagnostic accuracy (4-8). 
In particular, the apparent diffusion coefficient (ADC) from 
DWI has been employed to differentiate low-grade from 
high-grade gliomas (9). Although simple and useful, an ADC 
derived from a mono-exponential model assumes that the 
diffusion-driven displacements of water molecules follow a 
Gaussian distribution (10). In biological tissues, however, the 
diffusion displacement distribution deviates from Gaussian 
distribution, and a DWI signal cannot be adequately 
characterized by a mono-exponential function (11, 12). To 
characterize this non-Gaussian diffusion behavior, many 
advanced DWI models have been proposed (13-28). Among 
these are the continuous-time random-walk (CTRW) 
model (26, 29) and its predecessor, the fractional order 
calculus (FROC) model, both of which have improved the 
characterization of DWI signals in a high b-value regime 
(30-32). In earlier studies, the CTRW and FROC model 
parameters were found to be sensitive to microscopic tissue 

structural heterogeneity at a sub-voxel level, particularly in 
tumor tissues (23-26, 30-33).

Irrespective of the diffusion model employed, most 
studies have relied on region-of-interest (ROI) analyses, 
which compute the mean value of diffusion parameters over 
the tumor tissues. However, the voxel values of diffusion 
parameters within a tumor can differ widely, primarily 
because of macroscopic tissue heterogeneity, resulting 
in under- or over-estimation (34). Recognizing the high 
degree of intra-tumor heterogeneity, some investigators 
have recently employed percentile-based histogram 
analysis in DWI studies (35-39). Using the distribution of 
relevant diffusion parameters, this approach can provide 
multiple quantitative metrics beyond the mean value, thus 
providing opportunities for improved characterization of 
intra-tumoral heterogeneity and identification of the most 
diagnostic tissue components in a manner similar to that of 
histopathological analysis. When a percentile-based analysis 
is used, a key issue is to establish a percentile cutoff. Using 
a small percentage (e.g., 5%) may reduce the statistical 
power of the analysis and cause it to miss important tissue 
components, whereas using a large percentage (e.g., 90%) 
may reduce the sensitivity because of the averaging effect 
among heterogenous tissues and can be subject to the 
same limitations caused by using the mean value from the 
entire ROI. Our goal in this study is to systematically and 
statistically determine an optimal percentile cut-off for 
calculating the mean parameters obtained from a CTRW 
model for differentiating between individual glioma grades. 

MATERIALS AND METHODS

Patients
This retrospective study was approved by the local 

Institutional Review Board, and all patients gave written-
informed consent to the study. Glioma patients were 
included based on the following criteria: (1) age ≥ 18 years; 
(2) no history of treatment; (3) availability of data from 
multi b-value DWI and routine MRI; and (4) histopathologic 
confirmation of the tumor in accordance with the WHO 
guidelines. The exclusion criteria included (1) excessive 
artifacts in the MR images; (2) diameter of the tumor’s 
short axis < 3 cm; or (3) the time between the MRI scan 
and surgical resection or biopsy > 2 weeks. Using these 
criteria, 91 subjects were included in the study, consisting of 
1 grade I, 42 grade II, 19 grade III, and 29 grade IV gliomas. 
The single patient with a grade I glioma was excluded from 
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analysis because of the small sample size. The mean age of 
the remaining participants (39 females and 51 males) was 
44.1 years ± 12.6 (standard deviation) with an age range of 
18-75 years.

Image Acquisition
Prior to surgical resection or biopsy, all patients were 

scanned on a 3T General Electric MR750 scanner (General 
Electric Healthcare, Waukesha, WI, USA) with a commercial 
32-channel head coil. The MRI protocol included pre-
contrast transverse T1 fluid-attenuated inversion recovery 
(T1-FLAIR), T2 fast spin echo (T2-FSE), T2-FLAIR, and multi-
b-value DWI, followed by post-contrast T1-FLAIR. The 
acquisition parameters for DWI were: TR/TE = 700/100 ms, 
section thickness = 5 mm, inter-section spacing = 1.5 mm, 
separation between two diffusion gradient lobes Δ = 38.6 
ms, duration of each diffusion gradient lobe δ = 32.2 ms, 
FOV (field of view) = 22 × 22 cm2, matrix size = 256 × 256, 
and 17 b values = 01, 201, 501, 1001, 2001, 4001, 6001, 8001, 
10001, 12001, 16001, 20002, 24002, 28002, 32004, 36004, and 
40004 s/mm2 (where the subscripts represent the number of 
averages). The total scan time for DWI was 4 minutes and 
16 seconds to obtain 20 slices covering the whole brain. To 
mitigate the effect of diffusion anisotropy, we applied the 
diffusion-weighting gradient successively along the three 
orthogonal directions, producing a trace-weighted image 
for analysis (40).

Diffusion Image Analysis

A CTRW model was employed to fit to the multi-b-value 
diffusion-weighted images according to Equation [1] (26):

S/S0 = Eα [-(bDm)β], [1]

where Dm is an anomalous diffusion coefficient, α and β 
are parameters related to temporal and spatial diffusion 
heterogeneities, respectively, and Eα is a Mittag-Leffler 
function. The CTRW parameter maps of Dm, α, and β were 
generated by nonlinear least-squares fitting, which used 
an iterative Levenberg-Marquardt algorithm in Matlab 
(MathWorks, Inc., Natick, MA, USA). After noise rejection 
and Rician noise correction (23), the fitting proceeded by 
first estimating Dm using the diffusion images with b-values 
≤ 2800 s/mm2, followed by a simultaneous estimation of α 
and β from all diffusion-weighted images (b-values = 0 - 
4000 s/mm2) using a function value termination tolerance 
of 10-4 and limiting the number of iterations to 100. 

Percentile-Based Histogram Analysis
The ROIs containing the entire tumor, including necrotic 

or cystic areas, were drawn on b = 0 s/mm2 images by 
the consensus of two radiologists who were blinded to 
histopathological diagnosis. These ROIs were applied 
to each map of Dm, α , and β  for all tumor-containing 
sections, producing a volume of interest for each glioma 
patient, which were then analyzed by using a histogram to 
determine the percentile cut-offs, as described below. After 
the patients were separated by their glioma grades, we 
performed a statistical analysis for each CTRW parameter. 
To better illustrate the processing steps, we will use the α 
parameter as an example. 

First, a histogram of α was created based on the voxel 
values within the full volume of interest for each patient. 
Second, starting from the left tail of the histogram (i.e., 
from the lower α values), each percentile between 1% and 
100% was investigated as a cut-off to calculate the mean 
α value. At each percentile cut-off, the α values within that 
percentile were averaged using an arithmetic mean. Third, 
for each percentile cut-off, a Student’s t-test was used to 
calculate the P-value for the statistical difference in the 
mean α between grade II and III and between grade III and 
IV gliomas. Finally, we defined the optimal percentile cut-
offs for each differentiation (i.e., grade II vs. III and grade III 
vs. IV gliomas) as being the greatest percentile cut-offs that 
yielded a P-value less than 0.05. The rationale behind this 
choice was that more data would yield greater statistical 
power. This same procedure was repeated for the remaining 
two CTRW parameters, Dm and β, to determine their optimal 
percentile cut-off values.

Statistical Analysis
We performed a receiver operator characteristic 

(ROC) analysis to differentiate the glioma grades. After 
determining the optimal percentile cut-off for each 
individual parameter (Dm, α , or β ), we computed the 
optimal mean parameter values by using the values that 
fell within the percentile cut-off (i.e., between 0% and the 
percentile cut-off). Using this mean value, we performed 
an ROC analysis to evaluate each individual parameter’s 
performance in differentiating grade II vs. III and grade III 
vs. IV gliomas. We also performed an ROC analysis based on 
the different combinations of the CTRW parameters, (Dm, α), 
(Dm, β), (α, β), and (Dm, α, β), by using a multivariable logistic 
regression for each parameter combination, as expressed in 
Equation [2]
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P0 = exp (a0 + a1Dm + a2α+a3β) /
[1 + exp (a0+a1Dm + a2α + a3β)], [2]

where a0 is a constant, and ai (I = 1, 2, 3) are the regression 
coefficients of the three CTRW parameters. 

We compared the performances of the CTRW parameters, 
individually or jointly,  in differentiating the glioma grades 
by using the sensitivity and specificity cut-off values, the 
diagnostic accuracy, and the area under the curve (AUC). 
For comparison, we repeated the ROC analyses based on 
both the individual parameter and combined parameters by 
using the conventional approach based on the mean from 
the entire ROI (i.e., using the 100th percentile as the “cut-
off”). Afterwards, we compared the optimal percentile-
based analysis with the entire ROI-based analysis, looking 
for statistical differences in their sensitivity, specificity, and 
accuracy achieved by the individual CTRW parameters and 
their combinations , by employing a McNemar test (41) for 
paired binomial responses. In addition, we compared the 
AUCs from the two analyses using a Hanley and McNeil test 
(42).

RESULTS

Figure 1 shows D m,  α ,  and β  maps from three 
representative patients, one from each of the grade II, III, 
and IV groups. The tumor ROIs are outlined in black contours 
in the parameter maps. The CTRW parameter values in the 
tumor ROIs progressively decreased as the tumor grade 
increased. Furthermore, these progressive decreases were 
prominent in only some parts of the heterogeneous ROI, 
thereby supporting the use of a percentile-based analysis. 

Figure 2 shows a representative histogram of Dm values 
generated from the tumor ROIs of a grade II glioma patient. 
The optimal percentile for grades II vs. III differentiation is 
shown as a red vertical line. All data to the right of this line 
were excluded from the calculation of the mean parameter 
value.

Figure 3 show the plots of P-value versus percentile 
cut-off for Dm, α, and β, respectively, for the comparisons 
of grade II vs. III (in blue) and grade III vs. IV gliomas (in 
orange). These P-value plots monotonically increased 
past the third percentile, indicating that inclusion of a 
large portion of the histogram decreases the statistical 
significance (i.e., a higher P-value). On the other hand, 
the P-value at low percentiles (e.g., the 5th percentile for 
Dm) exhibited greater statistical significance (i.e., a lower 

P-value) but was determined using fewer data points 
and was thus subject to unreliability and bias. Both of 
these observations support the use of a percentile-based 
histogram analysis.

For grades II vs. III differentiation, we found the percentile 
cut-off for Dm to be the 68th percentile. The P values based 
on α were statistically significant up to the 75th percentile. 
For β , P-value was less than 0.05 at all percentiles. For 
grades III vs. IV differentiation, the percentile cut-offs for Dm 
and α were at the 58th and 19th percentiles, respectively. 
Similar to the separation between grades II and III, P-value 
for β was less than 0.05 at all percentiles. Overall, the 
optimal percentiles were generally higher for comparisons 
between grades II and III than for comparisons between 
grades III and IV. When the entire ROI (i.e., 100th percentile) 
was used for calculating the mean parameter values, the 
differences between grades II and III or grades III and IV 
were statistically insignificant in Dm (P = 0.202 for grades 
II vs. III and P = 0.085 for grades III vs. IV) and α (P = 0.132 
for grades II vs. III and P = 0.424 for grades III vs. IV).

Figure 4 and Table 1 show the ROC curves and the 
sensitivity, specificity, accuracy, and AUC of using individual 

Table 1. Receiver Operating Characteristic Performance Metrics 
of Each CTRW (Continuous-time random-walk) Parameter for 
Grades II and III Differentiation Using an Optimal Percentile-
based Histogram Analysis and the Entire-ROI-Based (i.e., 100th 
Percentile) Analysis

Optimal percentile-based histogram analysis

Dm α β

Sensitivity 0.578 0.789 0.684

Specificity 0.690* 0.571 0.667

Accuracy 0.655* 0.639 0.672

AUC 0.634* 0.635* 0.713

Entire-ROI-based analysis

Sensitivity 0.578 0.684 0.684

Specificity 0.547* 0.571 0.667

Accuracy 0.557* 0.606 0.672

AUC 0.567* 0.590* 0.713
Analysis in the upper half of the table is based on the mean parameter values 
computed from the an optimal percentile as described in the text. Analysis in the 
lower half of the table is based on the mean parameter values computed from the 
entire ROI.
Asterisk (*) indicates statistical significance between the performance metrics 
obtained from the optimal percentile- and entire-ROI-based analysis according 
to the McNemar test for specificity, sensitivity, and accuracy and the Hanley and 
McNeil test for AUC.
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parameters, Dm (Fig. 4a), α (Fig. 4b), or β (Fig. 4c), for the 
separation between grade II and III gliomas. In all cases, 
the curves obtained from using the optimal percentile cut-
off either performed better, with statistically significant 
differences in most cases, or performed equally as well as 
the curves obtained from the entire ROI analysis. Overall, α 
had the best sensitivity (0.789), Dm had the best specificity 
(0.690), and β had the best accuracy (0.672) and AUC 
(0.713). 

Figure 5 and Table 2 summarize the ROC curves and the 
sensitivity, specificity, accuracy, and AUC resulting from the 
use of individual parameters Dm (Fig. 5a), α (Fig. 5b), or β (Fig. 
5c), for the separation between grade III and IV gliomas. 

The results were similar to those from the differentiation 
between grade II and III gliomas, though we observed 
improvements in Dm and α ’s specificity and AUC and α ’s 
accuracy when using the optimized percentile cut-off as 
opposed to the 100th percentile. The ROC metrics of β 
were identical to their counterparts in Table 1 because the 
optimal percentile cut-off was set at the 100th percentile. 
Here, β again had the best AUC (0.702), accuracy (0.645), 
and sensitivity (0.620), whereas α had the best specificity 
(0.842). 

As the optimal percentile cut-off was determined to be 
the same as the one used in the entire-ROI-based analysis 
(i.e., 100th percentile) for β, we assessed the performance 

Fig. 1. The maps of CTRW parameters for representative patients in grades II, III, and IV glioma groups. The ROI of each 
tumor is outlined within the black contours.
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Fig. 2. A representative histogram 
of Dm values from the ROI of a 
grade II glioma patient. The dark-
red line indicates the optimal 
percentile cut-off, in this case, the 
68th percentile. All values in the 
shaded areas in pink were excluded 
from analysis.

Fig. 3. Graphs of P value versus percentile for Dm, α, and β. The blue and orange curves are for differentiation between grade 
II and grade III, and grade III and IV gliomas, respectively. The dashed green line indicates P-value = 0.05.
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of the (Dm, α) combination in differentiating between 
glioma grades by using a multivariable logistic regression, 
as summarized in Figure 6 and Table 3. Compared to the 
performance obtained from using the entire ROI (i.e., 
100th percentile), the optimal percentile-based method 
was better in all metrics, sensitivity (0.761 vs. 0.690, P 

≤ 0.05), specificity (0.578 vs. 0.526), accuracy (0.704 vs. 
0.639, P ≤ 0.05), and AUC (0.671 vs. 0.599, P ≤ 0.05), in the 
differentiation between grades II and III as summarized in 
the first column of Table 3. As summarized in the second 
column of Table 3, for the differentiation between grades 
III and IV, the optimal percentile-based (Dm, α) combination 

Fig. 4. ROC performance curves when using individual 
CTRW parameters to differentiate grade II from grade III 
gliomas. Results based on Dm, α, and β are shown in (a-
c), respectively. Each plot displays the curves generated 
by using both the optimal percentile cut-off (in blue) and 
the 100th percentile (in red). Note that for β, the optimal 
percentile cut-off was chosen as the 100th percentile. 
Performance metrics are provided in Table 1.

a

c

b
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outperformed the one based on the entire-ROI-based 
analysis in sensitivity (0.789 vs. 0.578, P ≤ 0.05). Although 
we also observed an improvement in AUC (0.637 vs. 0.620), 
the difference was not statistically significant. 

DISCUSSION

Imaging-based glioma assessment is important in 
managing brain-tumor patients, despite the prevalence 
of histopathology analysis and the rising emphasis on 
molecular markers. Histopathology analysis relies on tissue 

Fig. 5. ROC performance curves for differentiating grade 
III from grade IV tumors when using Dm, α , and β . The 
curves using the optimal percentile cut-off are shown in 
blue, those using the 100th percentile are shown in red. 
Note that for β, the optimal percentile cut-off is the 100th 
percentile. Performance metrics are provided in Table 2.

a

c

b
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Fig. 6. ROC performance curves using the combination of (Dm, α) to differentiate glioma grades. Differentiation of grade II 
vs. III in (a) and grade III vs. IV in (b). The curve using the optimal percentile cut-off is shown in blue, the curve using the 
100th percentile in red. Performance metrics are summarized in Table 3.

a b

Table 2. Receiver Operating Characteristic Performance Metrics 
of Each CTRW (Continuous-time random-walk) Parameter for 
Grades III and IV Differentiation Using an Optimal Percentile-
Based Histogram Analysis and the Entire-ROI-Based (i.e., 100th 
percentile) analysis

Optimal percentile-based histogram analysis

Dm α β

Sensitivity 0.551 0.482 0.620

Specificity 0.736* 0.842* 0.684

Accuracy 0.625 0.625 0.645

AUC 0.644 0.644 0.702

Entire-ROI-based analysis

Sensitivity 0.655 0.517 0.620

Specificity 0.578* 0.631* 0.684

Accuracy 0.625 0.562 0.645

AUC 0.618 0.519 0.702
Analysis in the upper half of the table is based on the mean parameter values 
computed from the an optimal percentile as described in the text. Analysis in the 
lower half of the table is based on the mean parameter values computed from the 
entire ROI.
Asterisk (*) indicates statistical significance between the performance metrics 
obtained from the optimal percentile- and entire-ROI-based analysis according 
to the McNemar test for specificity, sensitivity, and accuracy and the Hanley and 
McNeil test for AUC.

Table 3. Receiver Operating Characteristic Performance Metrics 
from the Combination of (Dm, α) for Differentiation of Grade 
II vs. III and Grade III vs. IV Gliomas. Parameter Values were 
Chosen Via an Optimal Percentile cut-off or 100th Percentile, 
Calculated Based on a Multivariable Logistic Regression

Grade II vs. III Grade III vs. IV

Optimal percentile-based histogram analysis

Sensitivity 0.761* 0.789*

Specificity 0.578 0.482

Accuracy 0.704* 0.604

AUC 0.671* 0.637

Entire-ROI-based analysis

Sensitivity 0.690* 0.578*

Specificity 0.526 0.689

Accuracy 0.639* 0.645

AUC 0.599* 0.620
Analysis in the upper half of the table is based on the mean parameter values 
computed from an optimal percentile as described in text. Analysis in the second 
half of the table is based on the mean parameter values computed from the entire 
ROI.
Asterisk (*) indicates statistical significance between the performance metrics 
obtained from the optimal percentile- and entire-ROI-based analysis according 
to the McNemar test for specificity, sensitivity, and accuracy and Hanley and the 
McNeil test for AUC.
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specimens taken at a limited number of spatial locations 
and is thereby subject to sampling errors. Molecular 
markers also rely on tissue specimens and may fail due to 
an insufficient amount of tissue. In addition, tumors at or 
near specific locations, such as the brain stem in pediatric 
patients, present considerable surgical risks for biopsy or 
resection. In contrast, imaging-based glioma evaluation 
can sample the entire lesion non-invasively, no matter the 
tumor location. This advantage, however, also brings about 
a practical challenge: that of effectively and optimally 
analyzing the vast amount of voxel-level, spatially resolved 
data. Commonly, an ROI-based analysis yields a mean 
value from the entire ROI. This approach faces at least 
two limitations. First, the selection of an ROI depends on 
the operator and can be highly subjective. Second, when 
tumor tissue is heterogeneous, as in a glioma, where tumor, 
hemorrhage, necrosis, edema, and other pathologies can 
co-exist, the ROI-based approach can dilute contributions 
from the tumor tissue due to the averaging with other 
tissue components, reducing the sensitivity. This bias may 
explain why most DWI-based results are effective only 
for separating low- from high-grade gliomas, but not as 
effective for differentiating individual glioma grades (9). This 
bias may also account for the discrepancies between some 
published studies (7, 43, 44). To address these limitations, a 
quartile- or percentile-based approach has been proposed, 
in which only a specific percentile of the histogram 
computed within an ROI is used in order to filter out non-
contributing tissue components (e.g., hemorrhage, necrosis, 
and/or edema) (33, 37, 45, 46). The selection of a quartile or 
a percentile of an ROI-based histogram has been somewhat 
arbitrary. In this study, we have addressed this issue in a 
systematic way by calculating an optimal percentile cut-
off using a CTRW diffusion model as an example. We have 
investigated and determined the optimal percentile cut-
offs for each of the three CTRW model parameters in order 
to differentiate grade II vs. grade III and grade III vs. grade 
IV gliomas. Importantly, we have demonstrated that glioma 
grading was improved when using the optimal percentile 
cut-offs than by averaging over the entire ROI. Our results 
can serve as a prototype for investigating other DWI-based 
quantitative parameters or non-diffusion-based parameters 
for glioma grading. The method described herein can also 
be extended beyond gliomas to other cancers.

Our previous studies have shown that the CTRW model 
parameters yielded lower values in tumors with higher 
grades (26, 46). In this study, we used the left tails of 
the parameter histograms (i.e., lower parameter values) 

to compute the optimal mean parameters by using the 
values that fell between 0% and the percentile cut-
off. This strategy is consistent with the histopathology 
practice where the most malignant components of the 
specimen are used to make a diagnosis. We have observed 
that the optimal percentile cut-offs differ greatly among 
the three CTRW parameters. For example, to separate 
grade III from grade IV gliomas, the optimal percentile 
cut-offs ranged from 19% for α , 58% for Dm, to 100% 
for β , perhaps because of the different roles of these 
parameters in revealing the underlining tissue structural 
differences in the different grades of gliomas. Similar to 
ADC, Dm has been predominantly associated with tissue 
cellularity. The presence of necrosis, hemorrhage, and 
edema can substantially affect Dm through alterations 
in cellularity. As the tumor grade increases from II to IV, 
these confounding factors play an increasingly important 
role. Hence, the need for filtering out these perturbations 
within the tumor ROI increases. This explains why the 
optimal percentile cut-off decreased from 68% for grade 
II vs. grade III differentiation to 58% for grade III vs. grade 
IV differentiation (note that a lower percentile indicates 
more filtration). Unlike Dm, α and β have been associated 
with intravoxel tissue heterogeneities (23, 26, 28, 47, 
48). It is important to recognize that microscopic (i.e., 
intravoxel) tissue heterogeneity can be influenced by 
macroscopic (i.e., intervoxel) tissue heterogeneity. Although 
heterogeneities at these two different spatial scales may 
not be completely separable, using an optimal percentile 
cut-off can be a practical way to filter out certain types of 
macroscopic heterogeneities, such as those introduced by 
tissue components other than those of the tumor itself. It is 
well known that macroscopic tissue heterogeneity increases 
with the tumor grade. Thus, the optimal percentile cut-
offs of α are expected to be higher (i.e., less filtration) for 
differentiating grade II vs. grade III than for differentiating 
grade III vs. grade IV (i.e., more filtration), as we observed 
in our study (Fig. 3). It is worth noting that β behaved 
differently in glioma grading as measured by P-values. The 
entire histogram of β contributed to glioma grading without 
filtration, whereas α was substantially filtered out for grade 
III vs. grade IV differentiation. Although this observation is 
consistent with some published studies that have shown 
better performance of β over α (27, 46), the exact histologic 
underpinning is not known and should be investigated in 
future validation studies.

In general, the approach with optimal percentile cut-
offs outperformed the traditional method of computing 



www.i-mri.org114

Percentile-Based Non-Gaussian Diffusion MRI for Glioma Grading | M. Muge Karaman, et al.

the mean over the entire ROI (Figs. 4-6, Tables 1-3). The 
improvement was observed not only on individual CTRW 
parameters, but also in the combination of Dm and α as 
evidenced by AUC and other statistical parameters. The use 
of multiple parameters can integrate several aspects of the 
underlying changes in glioma tissues and thus improve the 
performance, as other studies have shown (26, 27, 30).

In this study, we focused on pair-wise differentiations 
between neighboring glioma grades (grade II vs. grade III, 
grade III vs. grade IV), largely because grade II vs. grade IV 
differentiation is typically less challenging. The proposed 
technique can be generalized to a finer classification of 
the glioma grades, which would allow identification of the 
grades among all tumors. However, such differentiation 
would require a more balanced sample size among all three 
grades. Future studies should investigate the feasibility of 
the proposed technique for a more detailed classification of 
the glioma grades with a larger cohort.

Our study has limitations. First, although most of our 
results suggest that the approach with optimal percentile 
cut-offs is advantageous, the approach did not yield the 
expected outcome in two scenarios where the optimal 
percentile cut-off produced lower sensitivities than did 
the entire-ROI analysis in differentiating between grade 
III and IV tumors when the CTRW parameters were used 
individually and produced lower specificities when they were 
used conjointly. This unexpected finding may have resulted 
from the inadequate sample size, sub-optimal signal-to-
noise ratio in the parameter maps, or other factors requiring 
further investigation. Second, our study was limited to a 
single diffusion model - the CTRW model. To generalize the 
proposed approach with optimal percentile cut-offs, other 
diffusion models, such as intravoxel incoherent motion 
(IVIM) (49), diffusion kurtosis imaging (DKI) (18), q-space 
trajectory imaging (QTI) (14), or restricted spectrum imaging 
(RSI) (22), need to be investigated in the context of tumor 
grading or other applications. Third, the specific percentile 
cut-off values obtained in this study were intended only 
to demonstrate the method and should not be used as 
suggested values for clinical evaluations. To validate 
these cut-off values, a larger sample of patients would be 
required. 

Last, our analysis did not include patients with grade I 
gliomas due to their low rate of clinical presentation in 
adults. Despite these limitations, the approach illustrated 
in this study provides a systematic way to analyze ROI-
based data for glioma grading in specific and tissue 
characterization in general.

In conclusion, by employing the CTRW diffusion model 
as an example, we have shown that a percentile-based 
analysis can outperform the conventional ROI-based 
methods in differentiating individual glioma grades. 
The proposed approach provides a systematic way to 
statistically determine a cut-off in the percentile analysis 
of diffusion MRI parameters. With its ability to mitigate the 
issues associated with manual ROI selection and volume 
averaging over a heterogenous ROI, the technique presented 
in this study is expected to find other applications in cancer 
imaging where quantitative diffusion parameters are used 
as imaging markers.
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