
INTRODUCTION

Sperm cryopreservation is considered an essential tool 

of assisted reproductive technology, for the conserva-

tion of endangered species, breeding and distribution of 

superior genetic material throughout the animal industry 

(Grötter et al., 2019; Kumar et al., 2019). However, frozen 

thawed (FT) sperm has a short lifespan and reduced fertil-

ity (Sancho et al., 2007; Jovičić et al., 2020). It has been 

indicated that this is due to both a loss of sperm viability 

and impairment of function among survivors (Watson, 

2000; Ozkavukcu et al., 2008; Khan et al., 2021). Notably, 
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ABSTRACT    Sperm cryopreservation is a fundamental process for the long-term 
conservation of livestock genetic resources. Yet, the packaging method has been 
shown, among other factors, to affect the frozen-thawed (FT) sperm quality. This 
study aimed to develop a new mini-straw for sperm cryopreservation. In addition, 
the kinematic patterns, viability, acrosome integrity, and mitochondrial membrane 
potential (MMP) of boar spermatozoa frozen in the developed 0.25 mL straw, 0.25 mL 
(minitube, Germany), or 0.5 mL (IMV technologies, France) straws were assessed. Post-
thaw kinematic parameters were not different (experiment 1: total motility (33.89%, 
32.42%), progressive motility (19.13%, 19.09%), curvilinear velocity (42.32, 42.86), 
and average path velocity (33.40, 33.62) for minitube and the developed straws, 
respectively. Further, the viability (38.56%, 34.03%), acrosome integrity (53.38%, 
48.88%), MMP (42.32%, 36.71%) of spermatozoa frozen using both straw were not 
differ statistically (p > 0.05). In experiment two, the quality parameters for semen 
frozen in the developed straw were compared with the 0.5 mL IMV straw. The total 
motility (41.26%, 39.1%), progressive motility (24.62%, 23.25%), curvilinear velocity 
(46.44, 48.25), and average path velocity (37.98, 39.12), respectively, for IMV and 
the developed straw, did not differ statistically. Additionally, there was no significant 
difference in the viability (39.60%, 33.17%), acrosome integrity (46.23%, 43.23%), 
and MMP (39.66, 32.51) for IMV and the developed straw, respectively. These results 
validate the safety and efficiency of the developed straw and highlight its great 
potential for clinical application. Moreover, both 0.25 mL and 0.5 mL straws fit the 
present protocol for cryopreservation of boar spermatozoa.
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cryopreserved boar sperm, which is particularly sensi-

tive to the cellular stress imposed by cryopreservation, 

emerges from this process with poor viability (Rath et al., 

2009; Choi et al., 2014), and subsequently, the FT boar 

semen has not been integrated into artificial insemination 

centers (AI) at a rate comparable to that of other species 

(Yeste, 2015).

Numerous factors have been shown to affect semen 

quality during the freezing-thawing process. In this sense, 

the type of extender, cryoprotectants, packaging system, 

freezing and thawing rate (Buhr et al., 2001; Athurupana 

and Funahashi, 2014; Ravagnani et al., 2018; Grötter et 

al., 2019) have been emphasized. Considering the cost-

effectiveness and saving storage space without compro-

mising the post-thaw quality and fertility of semen, the 

sperm cryopreservation industry continuously modified 

semen packaging methods from bottles, bags, tubes and 

ampules to straws of different sizes (Sharma et al., 2015; 

Karan et al., 2018; Kaneko et al., 2021). Presently, sperm 

cryopreservation is routinely performed using 0.5 mL and 

0.25 mL straws, with similar or varying results among spe-

cies and freezing-thawing methods (Pesch and Hoffmann, 

2007; Buranaamnuay et al., 2009; Kang et al., 2020).

It is important to note that the cryopreservation labora-

tories in Korea use imported straws of different sizes for 

the sperm FT process. However, it’s well-recognized that 

the COVID-19 pandemic has posed significant challenges 

for supply chains globally (Raj et al., 2022). Inconsistency 

of supply has been identified as the most prominent 

challenge and is associated with the uncertainty of sup-

ply from upstream vendors, irregular and indefinite lead 

times and price volatility (Okorie et al., 2020; Paul and 

Chowdhury, 2021). Yet, manufacturing and supply chains 

have experienced large-scale disruption due to natural 

disasters and political risks.

It has been indicated that the cryopreservation of semen 

in mini-straws (0.25 mL) increases the number of doses 

and storage efficiency in liquid nitrogen and decreases 

extender and antibiotics costs (Johnson et al., 1995; Ste-

venson et al., 2009). However, because of the much high-

er surface-to-volume ratio in 0.25 mL straws heat dissipa-

tion or accumulation occurs much faster than with 0.5 mL 

straws. Consequently, greater caution is necessary with 

0.25 mL straws (Diskin, 2018). Information on the impact 

of mini vs. medium size straws on post-thaw semen qual-

ity of boar semen is variable (Jun-Feng et al., 2008; Bura-

naamnuay et al., 2009) and thus needs to be investigated. 

Therefore, this study was aimed to develop a new 0.25 mL 

straw (made of Pellethane 75D) and to examine the post-

thaw kinematic patterns, viability, acrosomal membrane 

integrity and mitochondrial membrane potential (MMP) of 

boar spermatozoa frozen using the developed straw and 

commercially available straws (0.25 mL, minitube, Ger-

many) and (0.5 mL, IMV Technologies, France).

MATERIALS AND METHODS

Experimental design
Chemicals used in the present study were purchased 

from Sigma-Aldrich (St. Louis, MO, USA) unless noted oth-

erwise. The procedures and media used for sperm cryo-

preservation and sperm thawing were essentially the same 

as those described previously (Almubarak et al., 2021) 

with some modifications described below. To validate the 

developed 0.25 mL straw (they were high-quality, non-

toxic straws made of Pellethane 2363-75D with a length 

of 140 mm and an inner diameter of 1.55 mm; sungwon 

medical, Korea), two experiments (two trials in each) 

were conducted and each trial was repeated at least four 

times. In experiment one, porcine semen was extended, 

cooled and transferred to the developed 0.25 mL and 0.25 

mL straw (reference no. 13407/3144; minitube, Germany). 

The straws were then cryopreserved as described subse-

quently. After thawing, the kinematic patterns of sperm 

frozen in the developed straw were compared with the 

commercial 0.25 mL straw group. Then, the effect of the 

FT process on the viability, acrosome integrity and MMP 

of both straws was studied. In experiment two: the post-

thaw kinematic patterns, viability, acrosome integrity and 

MMP of boar spermatozoa frozen in the developed 0.25 

mL straw and 0.5 mL straw (reference no. 028285; IMV 

technologies, France) were examined. 

Semen collection and sperm cryopreservation
Semen was collected from duroc boars belonging to a 

local AI center by the gloved-hand method. Ejaculates 

were diluted in Beltsville thawing solution (BTS) and 

transferred to the laboratory within one hour. Sperm mo-

tility was assessed upon arrival at the laboratory and only 

samples with total motility ≥ 80% were considered for the 

further experiment (Park et al., 2017). Qualified samples 

were diluted (2 × 108 cell/mL) with the extender consisted 
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of TES 12 g/L, Trizma Base 2 g/L, D (+) Glucose 32 g/L, 

OEP (Equex) 0.7% (v/v), Gentamycin Sulfate 0.02 g/L and 

20% (v/v) egg yolk. the extended semen was cooled to 4℃ 

in 1 h, after which, Extender 2 (composed of extender 

1 plus 4% (v/v) glycerol) was added 1:1 (v/v). Semen was 

packed in straws according to the experimental design, 

straws were then sealed and incubated for 25 min at 4℃. 

Then, kept 4 cm above liquid nitrogen vapors for 20 min. 

Straws were plunged into liquid nitrogen (-196℃) for stor-

age. After at least 24 h, straws were thawed at 38℃ for 25 

sec and the FT semen was used for assessment of differ-

ent sperm quality parameters. 

Evaluation of post-thaw motility and kinematic 

parameters
FT sperm were diluted 1:4 (v/v) in BTS. Sperm motil-

ity was evaluated by phase-contrast microscopy (Nikon, 

Model Eclipse E200) at 10x magnification using com-

puter-assisted sperm analysis (Sperm Class Analyzer, Mi-

croptic, Spain). Briefly, two μL of semen was placed in a 

counting chamber (Leja, Nieuw Vennep, Netherlands) on 

a heated stage of 38℃. For each analysis, four fields were 

evaluated and at least 500 cells were counted. Kinematic 

patterns including total sperm motility (TM, %), progres-

sive motility (PM, %), rapid progressive motility (RPM, 

%), medium progressive motility (MPM, %), curvilinear 

velocity (VCL, μm/s), average path velocity (VAP, μm/s), 

straight-line velocity (VSL, μm/s), straightness (STR, %), 

linearity (LIN, %), wobble (WOB, %), amplitude of lateral 

head displacement (ALH, μm) and beat cross frequency 

(BCF, Hz) were measured.

Evaluation of post-thaw viability
The evaluation of FT sperm viability was carried out us-

ing the LIVE/DEAD® Sperm Viability Kit (ThermoFisher, 

USA). A total of 200 spermatozoa were evaluated for each 

sample; with live and dead sperm, respectively stained 

green (SYBR-14+), and red (PI+). The results were ex-

pressed as live sperm mean percentage.

Evaluation of post-thaw acrosomal integrity
Acrosome status was determined according to a stain-

ing procedure described previously (Yu and Leibo, 2002) 

using FITC-PSA stain. Samples were examined using a 

fluorescence microscope (Axio, Carl Zeiss). Two hundred 

spermatozoa were evaluated and classified into intact or 

reacted acrosome. Only the percentage of sperm with in-

tact acrosome was presented in the result.

Evaluation of post-thaw mitochondrial membrane 

potential (MMP)
Rhodamine 123 (R123; Invitrogen TM, Eugene, OR, USA) 

and propidium iodide (PI) were used to determine mito-

chondrial activity. For this assay, 5 μL of R123 and 5 μL 

PI solution were added to 250 μL aliquot of diluted semen 

samples and incubated for 15 min at 37℃ in the dark. 

The stained samples were analyzed under a fluorescence 

microscope. Sperm displaying only green fluorescence at 

the mid-piece region were considered viable sperm with 

functional mitochondria (Najafi et al., 2018). The results 

were denoted as the proportion of spermatozoa with 

functional MMP.

Statistical analysis
The results are shown as the means ± standard error. 

Data were analyzed by independent t-test using IBM SPSS 

Statistics for Windows, Version 26.0 (IBM Corp., Armonk, 

NY, USA). Values of (p < 0.05) were considered to indicate 

the significant difference.

RESULTS

Experiment one
The post-thaw kinematic patterns of spermatozoa de-

termined by TM, PM, VCL, VAP and other parameters did 

not differ significantly (p > 0.05) between the developed 

and 0.25 mL Straws (Fig. 1 and Table 1). Furthermore, no 

statistically significant difference in the viability, acro-

some integrity, or MMP between the developed and 0.25 

mL straws (p > .05) (Fig. 2 and 3). 

Experiment two
Examination of the effects of the FT process on the dif-

ferent semen quality parameters revealed that straw size 

had no statistically significant influence on kinematics 

patterns, viability, acrosome integrity and the mitochon-

drial membrane potential. As shown in (Fig. 4 and Table 2), 

the kinematics patterns of sperm frozen in the developed 

0.25 mL straw did not differ from the 0.5 mL straw. Simi-

lar results (p > 0.05) were observed for the percentage of 

live spermatozoa, intact acrosomal membrane, and MMP, 

after cryopreservation using both straws (Fig. 5 and 6).
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DISCUSSION

Several methods have been studied to find the most suit-

able container for sperm cryopreservation. Most carriers 

described to date have demonstrated reasonable success, 

with varying degrees of technical difficulty (Duplaix and 

Sexton, 1984; Rodriguez-Martinez and Wallgren, 2011). 

Of note, the packaging system is a critical aspect to keep 

in mind in the development of sperm cryopreservation 

protocols. Semen packaging is also necessary for practi-

cal purposes and when using FT sperm for AI, as it de-

termines both the means of identification of each semen 

dose and how it could be arranged in the liquid nitrogen 

container for storage (Johnson et al., 2000; Pesch and 

Hoffmann, 2007). Currently, 0.25 mL and 0.5 mL straws 

are the most commonly used with results varying with 

species and freezing-thawing protocol (Stuart et al., 2019; 

Lone et al., 2020). In the current research, we developed 

a new 0.25 mL straw for freezing spermatozoa. Further, 

the kinematic patterns, viability, acrosome integrity, and 

MMP of boar spermatozoa frozen in the developed straw, 

0.25 mL (minitube) or 0.5 mL (IMV technologies) straws 

were regarded as indices for assessing the effect of the 

freezing-thawing process. These parameters are crucial 

markers for semen assessment. Indeed, fertility is corre-

lated to semen characteristics, such as kinematic variables 
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Fig. 1. Motility patterns of boar spermatozoa after freezing-
thawing with 0.25 mL straw (minitube, Germany) and the devel-
oped 0.25 mL straw. TM, Total motility; PM, progressive motil-
ity; RPM, rapid progressive motility; MPM, Medium progressive 
motility (p > 0.05). Results are presented as the mean percent-
age ± SE. Error bars represent the standard error of the mean.
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Fig. 2. Viability and acrosome integrity of boar spermatozoa af-
ter freezing-thawing using 0.25 mL straw (minitube, Germany) 
and the developed 0.25 mL straw (p > 0.05). Results are pre-
sented as the mean percentage ± SE. Error bars indicate the 
standard error of the mean.
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Fig. 3. Mitochondrial membrane potential of boar spermatozoa 
after freezing-thawing using 0.25 mL straw (minitube, Ger-
many) and the developed 0.25 mL straw (p > 0.05). Results are 
presented as the mean percentage ± SE. Error bars indicate the 
standard error of the mean.

Table 1. Kinematic patterns of boar spermatozoa after freezing-
thawing using 0.25 mL straw (minitube, Germany) and the developed 
0.25 mL straw

Parameter* 0.25 mL straw Developed 0.25 mL straw

VCL (μm/s) 42.32±4.34 42.86±5.86

VAP (μm/s) 33.40±3.35 33.62±4.61

VSL (μm/s) 26.89±2.94 27.08±4.10

STR (%) 71.11±1.78 70.33±1.90

LIN (%) 56.81±1.95 55.01±1.79

WOB (%) 75.80±1.06 73.47±0.58

ALH (μm) 1.58±0.13 1.59±0.17

BCF (Hz) 5.71±0.26 5.61±0.25

Values represent the mean ± standard error of the mean (SEM). 
*Experiment was repeated 4 times, p > 0.05.
VCL, curvilinear velocity; VAP, average path velocity; VSL, straight 
line velocity; STR, straightness; LIN, linearity; WOB, wobble; ALH, 
amplitude of lateral head displacement; BCF, beat cross-frequency.
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(Broekhuijse et al., 2012; Tremoen et al., 2018), viability, 

plasma and acrosomal membrane integrity (Flesch and 

Gadella, 2000; Sutkeviciene et al., 2009) and MMP (Ama-

ral, et al., 2013; Park and Pang, 2021).

In the present study, the assessment of the FT semen 

samples revealed comparable results (p > 0.05) in the ki-

nematics parameters, viability, acrosome integrity and 

MMP between the developed 0.25 mL straw and com-

mercial straws of different sizes. In agreement with these 

findings, (Stuart et al., 2019; Zong et al., 2022) reported 

no difference in sperm motility between 0.25 mL and 

0.5 mL straws of FT spermatozoa in alpaca and rooster, 

respectively. Similarly, (Nordstoga et al., 2009) indicated 

that straw type has no significant effect on the fertility of 

FT ram semen. On the other hand, (Ansari et al., 2011) 

observed that bovine semen cryopreserved with 0.25 mL 

straw resulted in a higher post-thaw quality than that 

of 0.5 mL straw. Also, (Kang et al., 2020) demonstrated 

that straw size had a substantial effect on sperm quality 

parameters, with 0.25 mL straw improving the motility, 

viability, and acrosomal, MMP, and plasma membrane 

integrity of bull spermatozoa compared to 0.5 mL straw. 

On the contrary, equine sperm cryopreserved in 0.5 mL 

straws has better sperm kinematics than in 0.25 mL straws 

(Dias et al., 2013). Higher motility and acrosome integrity 

were also obtained using 0.5 mL straw rather than 0.25 
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Fig. 4. Motility patterns of boar spermatozoa after freezing-
thawing using 0.5 mL straw (IMV, France) and the developed 
0.25 mL straw. TM, Total motility; PM, progressive motility; 
RPM, rapid progressive motility; MPM, Medium progressive mo-
tility. Results are presented as the mean percentage ± SE. Error 
bars indicate the standard error of the mean (p > 0.05).
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Fig. 5. Viability and acrosome integrity of boar spermatozoa 
after freezing-thawing using 0.5 mL straw (IMV, France) and 
the developed 0.25 mL straw. Results are given as the mean 
percentage ± SE. Error bars indicate the standard error of the 
mean (p > 0.05).
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Fig. 6. Mitochondrial membrane potential of boar spermatozoa 
after freezing-thawing with 0.5 mL straw (IMV, France) and the 
developed 0.25 mL straw. Results are presented as the mean 
percentage ± SE. Error bars indicate the standard error of the 
mean (p > 0.05).

Table 2. Kinematic patterns of boar spermatozoa after freezing-
thawing using 0.5 mL straw (IMV, France) and the developed 0.25 mL 
straw

Parameter* 0.5 mL straw Developed 0.25 mL straw

VCL (μm/s) 46.44±1.79 48.25±2.85

VAP (μm/s) 37.98±2.56 39.12±2.65

VSL (μm/s) 31.82±3.04 33.18±2.45

STR (%) 68.64±3.09 70.47±1.70

LIN (%) 55.43±4.36 56.25±3.18

WOB (%) 74.30±2.84 73.97±2.78

ALH (μm) 1.53±0.08 1.59±0.13

BCF (Hz) 5.39±0.22 5.70±0.21

Values represent the mean ± standard error of the mean (SEM). 
*Experiment was repeated 4 times, p > 0.05.
VCL, curvilinear velocity; VAP, average path velocity; VSL, straight 
line velocity; STR, straightness; LIN, linearity; WOB, wobble; ALH, 
amplitude of lateral head displacement; BCF, beat cross-frequency.
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mL straw after freezing-thawing dog spermatozoa (Nöth-

ling and Shuttleworth, 2005). These contradictory results, 

however, might be due to species and cooling-freezing-

thawing protocol differences. Moreover, the cooling pat-

tern and ice crystallization initiation depend, among oth-

er factors, on the size of the straw. The 0.25 mL straw has 

a higher surface-to-volume ratio than the 0.5 mL straw, 

which increases the probability of semen temperature 

fluctuations within the straw. Indeed, such changes can 

compromise the recovery of live spermatozoa after thaw-

ing and consequently decrease fertility. Thus, particular 

attention must be paid when handling 0.25 mL straws 

(Johnson et al., 1995; Diskin, 2018). Taken together, both 

0.25 mL and 0.5 mL straws fit the present protocol for FT 

boar spermatozoa. However, further research is needed 

concerning the assessment of fertilization capacity and 

using different freezing-thawing techniques.

CONCLUSION

In conclusion, the results of this study indicated the ef-

ficiency and safety of the developed 0.25 mL straw and 

highlight its great potential for clinical application. Ad-

ditionally, straw size had no substantial effect on the 

kinematic parameters, viability, acrosome integrity, and 

the mitochondrial membrane potential of FT boar semen 

under the current experimental condition.
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