DOI QR코드

DOI QR Code

Ginsenoside Rg1 enhances the healing of injured tendon in achilles tendinitis through the activation of IGF1R signaling mediated by oestrogen receptor

  • Wu, Tianyi (Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital) ;
  • Qi, Wenxiao (Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital) ;
  • Shan, Haojie (Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital) ;
  • Tu, Bin (Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital) ;
  • Jiang, Shilin (Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital) ;
  • Lu, Ye (Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital) ;
  • Wang, Feng (Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital)
  • 투고 : 2021.02.05
  • 심사 : 2021.08.17
  • 발행 : 2022.07.01

초록

Background: During the pathogenesis of tendinopathy, the chronic inflammation caused by the injury and apoptosis leads to the generation of scars. Ginsenoside Rg1 (Rg1) is extracted from ginseng and has anti-inflammatory effects. Rg1 is a unique phytoestrogen that can activate the estrogen response element. This research aimed to explore whether Rg1 can function in the process of tendon repair through the estrogen receptor. Methods: In this research, the effects of Rg1 were evaluated in tenocytes and in a rat model of Achilles tendinitis (AT). Protein levels were shown by western blotting. qRT-PCR was employed for evaluating mRNA levels. Cell proliferation was evaluated through EdU assay and cell migration was evaluated by transwell assay and scratch test assay. Results: Rg1 up-regulated the expression of matrix-related factors and function of tendon in AT rat model. Rg1 reduced early inflammatory response and apoptosis in the tendon tissue of AT rat model. Rg1 promoted tenocyte migration and proliferation. The effects of Rg1 on tenocytes were inhibited by ICI182780. Rg1 activates the insulin-like growth factor-I receptor (IGF1R) and MAPK signaling pathway. Conclusion: Rg1 promotes injured tendon healing in AT rat model through IGF1R and MAPK signaling pathway activation.

키워드

과제정보

This work was funded by National Natural Science Foundation of China (No.81902251).

참고문헌

  1. Choi HJ, Choi S, Kim JG, Song MH, Shim KS, Lim YM, Kim HJ, Park K, Kim SE. Enhanced tendon restoration effects of anti-inflammatory, lactoferrin-immobilized, heparin-polymeric nanoparticles in an Achilles tendinitis rat model. Carbohydr Polym 2020;241:116284. https://doi.org/10.1016/j.carbpol.2020.116284.
  2. Liu YC, Wang HL, Huang YZ, Weng YH, Chen RS, Tsai WC, Yeh TH, Lu CS, Chen YL, Lin YW, Chen YJ, Hsu CC, Chiu CH, Chiu CC. Alda-1, an activator of ALDH2, ameliorates Achilles tendinopathy in cellular and mouse models. Biochem Pharmacol 2020;175:113919. https://doi.org/10.1016/j.bcp.2020.113919.
  3. Lipman K, Wang C, Ting K, Soo C, Zheng Z. Tendinopathy: injury, repair, and current exploration. Drug Des Dev Ther 2018;12:591-603. https://doi.org/10.2147/DDDT.S154660.
  4. Docheva D, Muller SA, Majewski M, Evans CH. Biologics for tendon repair. Adv Drug Deliv Rev 2015;84:222-39. https://doi.org/10.1016/j.addr.2014.11.015.
  5. Bian X, Liu T, Yang M, Gu C, He G, Zhou M, Tang H, Lu K, Lai F, Wang F, Yang Q, Gustafsson JA, Fan X, Tang K. The absence of oestrogen receptor beta disturbs collagen I type deposition during Achilles tendon healing by regulating the IRF5-CCL3 axis. J Cell Mol Med 2020;24:9925-35. https://doi.org/10.1111/jcmm.15592.
  6. Gonzalez-Quevedo D, Diaz-Ramos M, Chato-Astrain J, Sanchez-Porras D, Tamimi I, Campos A, Campos F, Carriel V. Improving the regenerative micro-environment during tendon healing by using nanostructured fibrin/agarose-based hydrogels in a rat Achilles tendon injury model. Bone Joint Lett J 2020;102-B:1095-106. https://doi.org/10.1302/0301-620X.102B8.BJJ-2019-1143.R2.
  7. Zhang M, Liu H, Cui Q, Han P, Yang S, Shi M, Zhang T, Zhang Z, Li Z. Tendon stem cell-derived exosomes regulate inflammation and promote the high-quality healing of injured tendon. Stem Cell Res Ther 2020;11:402. https://doi.org/10.1186/s13287-020-01918-x.
  8. Yu J-s, Jin J, Li Y-y. The Physiological functions of IKK-selective substrate identification and their critical roles in diseases. STEMedicine 2020;1:e49. https://doi.org/10.37175/stemedicine.v1i4.49.
  9. Wang Y, He G, Tang H, Shi Y, Kang X, Lyu J, Zhu M, Zhou M, Yang M, Mu M, Chen W, Zhou B, Zhang J, Tang K. Aspirin inhibits inflammation and scar formation in the injury tendon healing through regulating JNK/STAT-3 signalling pathway. Cell Prolif 2019;52:e12650. https://doi.org/10.1111/cpr.12650.
  10. Leblanc DR, Schneider M, Angele P, Vollmer G, Docheva D. The effect of estrogen on tendon and ligament metabolism and function. J Steroid Biochem Mol Biol 2017;172:106-16. https://doi.org/10.1016/j.jsbmb.2017.06.008.
  11. Hansen M, Kjaer M. Sex hormones and tendon. Adv Exp Med Biol 2016;920:139-49. https://doi.org/10.1007/978-3-319-33943-6_13.
  12. Nogara PRB, Godoy-Santos AL, Fonseca FCP, Cesar-Netto C, Carvalho KC, Baracat EC, Maffulli N, Pontin PA, Santos MCL. Association of estrogen receptor beta polymorphisms with posterior tibial tendon dysfunction. Mol Cell Biochem 2020;471:63-9. https://doi.org/10.1007/s11010-020-03765-z.
  13. Bian X, Liu T, Zhou M, He G, Ma Y, Shi Y, Wang Y, Tang H, Kang X, Yang M, Gustafsson JA, Fan X, Tang K. Absence of estrogen receptor beta leads to abnormal adipogenesis during early tendon healing by an up-regulation of PPARgamma signalling. J Cell Mol Med 2019;23:7406-16. https://doi.org/10.1111/jcmm.14604.
  14. Cheng W, Jing J, Wang Z, Wu D, Huang Y. Chondroprotective effects of ginsenoside Rg1 in human osteoarthritis chondrocytes and a rat model of anterior cruciate ligament transection. Nutrients 2017;9. https://doi.org/10.3390/nu9030263.
  15. Gao QG, Chan HY, Man CW, Wong MS. Differential ERalpha-mediated rapid estrogenic actions of ginsenoside Rg1 and estren in human breast cancer MCF-7 cells. J Steroid Biochem Mol Biol 2014;141:104-12. https://doi.org/10.1016/j.jsbmb.2014.01.014.
  16. Komatsu I, Wang JH, Iwasaki K, Shimizu T, Okano T. The effect of tendon stem/progenitor cell (TSC) sheet on the early tendon healing in a rat Achilles tendon injury model. Acta Biomater 2016;42:136-46. https://doi.org/10.1016/j.actbio.2016.06.026.
  17. Yu H, Zhen J, Yang Y, Du J, Leng J, Tong Q. Rg1 protects H9C2 cells from high glucose-/palmitate-induced injury via activation of AKT/GSK-3 beta/Nrf 2 pathway. J Cell Mol Med 2020;24:8194-205. https://doi.org/10.1111/jcmm.15486.
  18. Luo M, Yan D, Sun Q, Tao J, Xu L, Sun H, Zhao H. Ginsenoside Rg1 attenuates cardiomyocyte apoptosis and inflammation via the TLR4/NF-kB/NLRP3 pathway. J Cell Biochem 2020;121:2994-3004. https://doi.org/10.1002/jcb.29556.
  19. Wu YF, Huang YT, Wang HK, Yao CJ, Sun JS, Chao YH. Hyperglycemia augments the adipogenic transdifferentiation potential of tenocytes and is alleviated by cyclic mechanical stretch. Int J Mol Sci 2017;19. https://doi.org/10.3390/ijms19010090.
  20. Ito Y, Toriuchi N, Yoshitaka T, Ueno-Kudoh H, Sato T, Yokoyama S, Nishida K, Akimoto T, Takahashi M, Miyaki S, Asahara H. The Mohawk homeobox gene is a critical regulator of tendon differentiation. Proc. Natl. Acad. Sci. U.S.A 2010;107:10538-42. https://doi.org/10.1073/pnas.1000525107.
  21. Mendias CL, Gumucio JP, Bakhurin KI, Lynch EB, Brooks SV. Physiological loading of tendons induces scleraxis expression in epitenon fibroblasts. J Orthop Res 2012;30:606-12. https://doi.org/10.1002/jor.21550.
  22. Voleti PB, Buckley MR, Soslowsky LJ. Tendon healing: repair and regeneration. Annu Rev Biomed Eng 2012;14:47-71. https://doi.org/10.1146/annurev-bioeng-071811-150122.
  23. Bai L, Gao J, Wei F, Zhao J, Wang D, Wei J. Therapeutic potential of ginsenosides as an adjuvant treatment for diabetes. Front Pharmacol 2018;9:423. https://doi.org/10.3389/fphar.2018.00423.
  24. Alolga RN, Nuer-Allornuvor GF, Kuugbee ED, Yin X, Ma G. Ginsenoside Rg1 and the control of inflammation implications for the therapy of type 2 diabetes: a review of scientific findings and call for further research. Pharmacol Res 2020;152:104630. https://doi.org/10.1016/j.phrs.2020.104630.
  25. Shi DD, Huang YH, Lai CSW, Dong CM, Ho LC, Li XY, Wu EX, Li Q, Wang XM, Chen YJ, Chung SK, Zhang ZJ. Ginsenoside Rg1 prevents chemotherapy-induced cognitive impairment: associations with microglia-mediated cytokines, neuroinflammation, and neuroplasticity. Mol Neurobiol 2019;56:5626-42. https://doi.org/10.1007/s12035-019-1474-9.
  26. Yang G, Rothrauff BB, Tuan RS. Tendon and ligament regeneration and repair: clinical relevance and developmental paradigm. Birth Defects Res C Embryo Today 2013;99:203-22. https://doi.org/10.1002/bdrc.21041.
  27. Lin TW, Cardenas L, Soslowsky LJ. Biomechanics of tendon injury and repair. J Biomech 2004;37:865-77. https://doi.org/10.1016/j.jbiomech.2003.11.005.
  28. Fenwick SA, Hazleman BL, Riley GP. The vasculature and its role in the damaged and healing tendon. Arthritis Res 2002;4:252-60. https://doi.org/10.1186/ar416.
  29. Thankam FG, Roesch ZK, Dilisio MF, Radwan MM, Kovilam A, Gross RM, Agrawal DK. Association of inflammatory responses and ECM disorganization with HMGB1 upregulation and NLRP3 inflammasome activation in the injured rotator cuff tendon. Sci Rep 2018;8:8918. https://doi.org/10.1038/s41598-018-27250-2.
  30. Freedman BR, Rodriguez AB, Leiphart RJ, Newton JB, Ban E, Sarver JJ, Mauck RL, Shenoy VB, Soslowsky LJ. Dynamic loading and tendon healing affect multiscale tendon properties and ECM stress transmission. Sci Rep 2018;8:10854. https://doi.org/10.1038/s41598-018-29060-y.
  31. Fu SC, Hung LK, Shum WT, Lee YW, Chan LS, Ho G, Chan KM. In vivo low-intensity pulsed ultrasound (LIPUS) following tendon injury promotes repair during granulation but suppresses decorin and biglycan expression during remodeling. J Orthop Sports Phys Ther 2010;40:422-9. https://doi.org/10.2519/jospt.2010.3254.
  32. Yoon JH, Halper J. Tendon proteoglycans: biochemistry and function. J Musculoskelet Neuronal Interact 2005;5:22-34.
  33. Jarvinen TA, Kannus P, Jarvinen TL, Jozsa L, Kalimo H, Jarvinen M. Tenascin-C in the pathobiology and healing process of musculoskeletal tissue injury. Scand J Med Sci Sports 2000;10:376-82. https://doi.org/10.1034/j.1600-0838.2000.010006376.x.
  34. Nayak BS, Kanhai J, Milne DM, Pinto Pereira L, Swanston WH. Experimental evaluation of ethanolic extract of Carapa guianensis L. Leaf for its wound healing activity using three wound models. Evid base Compl Alternative Med 2011;2011:419612. https://doi.org/10.1093/ecam/nep160.
  35. Langberg H, Boushel R, Skovgaard D, Risum N, Kjaer M. Cyclo-oxygenase-2 mediated prostaglandin release regulates blood flow in connective tissue during mechanical loading in humans. J Physiol 2003;551:683-9. https:// doi.org/10.1113/jphysiol.2003.046094.
  36. Millar NL, Wei AQ, Molloy TJ, Bonar F, Murrell GA. Cytokines and apoptosis in supraspinatus tendinopathy. J Bone Joint Surg 2009;91:417-24. https://doi.org/10.1302/0301-620X.91B3.21652.
  37. Lake JE, Ishikawa SN. Conservative treatment of Achilles tendinopathy: emerging techniques. Foot Ankle Clin 2009;14:663-74. https://doi.org/10.1016/j.fcl.2009.07.003.
  38. Schulze-Tanzil G, Al-Sadi O, Wiegand E, Ertel W, Busch C, Kohl B, Pufe T. The role of pro-inflammatory and immunoregulatory cytokines in tendon healing and rupture: new insights. Scand J Med Sci Sports 2011;21:337-51. https://doi.org/10.1111/j.1600-0838.2010.01265.x.
  39. Vincenti MP. The matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) genes. Transcriptional and posttranscriptional regulation, signal transduction and cell-type-specific expression. Methods Mol Biol 2001;151:121-48. https://doi.org/10.1385/1-59259-046-2:121.
  40. Egerbacher M, Arnoczky SP, Caballero O, Lavagnino M, Gardner KL. Loss of homeostatic tension induces apoptosis in tendon cells: an in vitro study. Clin Orthop Relat Res 2008;466:1562-8. https://doi.org/10.1007/s11999-008-0274-8.
  41. Chuen FS, Chuk CY, Ping WY, Nar WW, Kim HL, Ming CK. Immunohistochemical characterization of cells in adult human patellar tendons. J Histochem Cytochem 2004;52:1151-7. https://doi.org/10.1369/jhc.3A6232.2004.
  42. Inoue S, Browne G, Melino G, Cohen GM. Ordering of caspases in cells undergoing apoptosis by the intrinsic pathway. Cell Death Differ 2009;16:1053-61. https://doi.org/10.1038/cdd.2009.29.
  43. Kim YM, Jin JJ, Lee SJ, Seo TB, Ji ES. Treadmill exercise with bone marrow stromal cells transplantation facilitates neuroprotective effect through BDNFERK1/2 pathway in spinal cord injury rats. J Exerc Rehabil 2018;14:335-40. https://doi.org/10.12965/jer.1836264.132.
  44. Chen Q, Liang Q, Zhuang W, Zhou J, Zhang B, Xu P, Ju Y, Morita Y, Luo Q, Song G. Tenocyte proliferation and migration promoted by rat bone marrow mesenchymal stem cell-derived conditioned medium. Biotechnol Lett 2018;40:215-24. https://doi.org/10.1007/s10529-017-2446-7.
  45. Clegg DJ. Minireview: the year in review of estrogen regulation of metabolism. Mol Endocrinol 2012;26:1957-60. https://doi.org/10.1210/me.2012-1284.
  46. Kato M, Takaishi H, Yoda M, Tohmonda T, Takito J, Fujita N, Hosogane N, Horiuchi K, Kimura T, Okada Y, Saito T, Kawaguchi H, Kikuchi T, Matsumoto M, Toyama Y, Chiba K. GRIP1 enhances estrogen receptor alpha-dependent extracellular matrix gene expression in chondrogenic cells. Osteoarthritis Cartilage 2010;18:934-41. https://doi.org/10.1016/j.joca.2010.03.008.
  47. Dey P, Strom A, Gustafsson JA. Estrogen receptor beta upregulates FOXO3a and causes induction of apoptosis through PUMA in prostate cancer. Oncogene 2014;33:4213-25. https://doi.org/10.1038/onc.2013.384.
  48. Chan RY, Chen WF, Dong A, Guo D, Wong MS. Estrogen-like activity of ginsenoside Rg1 derived from Panax notoginseng. J Clin Endocrinol Metab 2002;87:3691-5. https://doi.org/10.1210/jcem.87.8.8717.
  49. Shi C, Zheng DD, Fang L, Wu F, Kwong WH, Xu J. Ginsenoside Rg1 promotes nonamyloidgenic cleavage of APP via estrogen receptor signaling to MAPK/ERK and PI3K/Akt. Biochim Biophys Acta 2012;1820:453-60. https://doi.org/10.1016/j.bbagen.2011.12.005.
  50. Chen WF, Lau WS, Cheung PY, Guo DA, Wong MS. Activation of insulin-like growth factor I receptor-mediated pathway by ginsenoside Rg1. Br J Pharmacol 2006;147:542-51. https://doi.org/10.1038/sj.bjp.0706640.
  51. Chen WF, Zhou LP, Chen L, Wu L, Gao QG, Wong MS. Involvement of IGF-I receptor and estrogen receptor pathways in the protective effects of ginsenoside Rg1 against Abeta(2)(5)(-)(3)(5)-induced toxicity in PC12 cells. Neurochem Int 2013;62:1065-71. https://doi.org/10.1016/j.neuint.2013.03.018.
  52. Lau WS, Chan RY, Guo DA, Wong MS. Ginsenoside Rg1 exerts estrogen-like activities via ligand-independent activation of ERalpha pathway. J Steroid Biochem Mol Biol 2008;108:64-71. https://doi.org/10.1016/j.jsbmb.2007.06.005.
  53. Lau WS, Chen WF, Chan RY, Guo DA, Wong MS. Mitogen-activated protein kinase (MAPK) pathway mediates the oestrogen-like activities of ginsenoside Rg1 in human breast cancer (MCF-7) cells. Br J Pharmacol 2009;156:1136-46. https://doi.org/10.1111/j.1476-5381.2009.00123.x.
  54. Ishihara H, Sasaoka T, Wada T, Ishiki M, Haruta T, Usui I, Iwata M, Takano A, Uno T, Ueno E, Kobayashi M. Relative involvement of Shc tyrosine 239/240 and tyrosine 317 on insulin induced mitogenic signaling in rat 1 fibroblasts expressing insulin receptors. Biochem Biophys Res Commun 1998;252:139-44. https://doi.org/10.1006/bbrc.1998.9621.
  55. Ravichandran KS. Signaling via Shc family adapter proteins. Oncogene 2001;20:6322-30. https://doi.org/10.1038/sj.onc.1204776.
  56. Song RX, Barnes CJ, Zhang Z, Bao Y, Kumar R, Santen RJ. The role of Shc and insulin-like growth factor 1 receptor in mediating the translocation of estrogen receptor alpha to the plasma membrane. Proc. Natl. Acad. Sci. U.S.A 2004;101:2076-81. https://doi.org/10.1073/pnas.0308334100.
  57. Gao QG, Zhou LP, Lee VH, Chan HY, Man CW, Wong MS. Ginsenoside Rg1 activates ligand-independent estrogenic effects via rapid estrogen receptor signaling pathway. J Ginseng Res 2019;43:527-38. https://doi.org/10.1016/j.jgr.2018.03.004.
  58. Greger JG, Guo Y, Henderson R, Ross JF, Cheskis BJ. Characterization of MNAR expression. Steroids 2006;71:317-22. https://doi.org/10.1016/j.steroids.2005.09.016.
  59. Cookman CJ, Belcher SM. Estrogen receptor-beta up-regulates IGF1R expression and activity to inhibit apoptosis and increase growth of medulloblastoma. Endocrinology 2015;156:2395-408. https://doi.org/10.1210/en.2015-1141.
  60. Disser NP, Sugg KB, Talarek JR, Sarver DC, Rourke BJ, Mendias CL. Insulin-like growth factor 1 signaling in tenocytes is required for adult tendon growth. FASEB (Fed Am Soc Exp Biol) J 2019;33:12680-95. https://doi.org/10.1096/fj.201901503R.
  61. Haramoto Y, Takahashi S, Oshima T, Onuma Y, Ito Y, Asashima M. Insulin-like factor regulates neural induction through an IGF1 receptor-independent mechanism. Sci Rep 2015;5:11603. https://doi.org/10.1038/srep11603.
  62. Rodrigues Alves APN, Fernandes JC, Fenerich BA, Coelho-Silva JL, Scheucher PS, Simoes BP, Rego EM, Ridley AJ, Machado-Neto JA, Traina F. IGF1R/IRS1 targeting has cytotoxic activity and inhibits PI3K/AKT/mTOR and MAPK signaling in acute lymphoblastic leukemia cells. Canc Lett 2019;456:59-68. https://doi.org/10.1016/j.canlet.2019.04.030.
  63. Liang F, Hua JX. Absorption profiles of sanchinoside R1 and ginsenoside Rg1 in the rat intestine. Eur J Drug Metab Pharmacokinet 2005;30:261-8. https://doi.org/10.1007/BF03190630.