DOI QR코드

DOI QR Code

Covalent Adaptable Liquid Crystal Elastomers Comprising Thiourea Bonds: Reprocessing, Reprogramming and Actuation

  • Lee, Jin-Hyeong (School of Chemical Engineering, Pusan National University) ;
  • Park, Sungmin (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Yong Seok (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Dong-Gyun (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Ahn, Suk-kyun (School of Chemical Engineering, Pusan National University)
  • Received : 2022.06.08
  • Accepted : 2022.06.20
  • Published : 2022.06.30

Abstract

In this work, we report a highly deformable covalent adaptable-liquid crystal elastomer (CA-LCE) comprising dynamic thiourea bonds that enable macromolecular network rearrangement at elevated temperatures. The exchange of chain network is verified through stress-relaxation analyses and follows Arrhenius-type behavior. The unique capability of rearranging the chain network in the CA-LCE provides useful properties, such as welding, melt reprocessing, and shape reprogramming, that cannot be achieved by the conventional LCE comprising permanent crosslinks. Reversible actuation is further demonstrated by reprogramming the polydomain CA-LCE into a monodomain via mechanical stretching at elevated temperatures.

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

References

  1. K. M. Herbert, H. E. Fowler, J. M. McCracken, K. R. Schlafmann, J. A. Koch, and T. J. White, "Synthesis and alignment of liquid crystalline elastomers", Nat. Rev. Mater., 7, 23 (2022). https://doi.org/10.1038/s41578-021-00359-z
  2. S. Choi, J.-H. Lee, and S.-K. Ahn, "가변형 액정 엘라스토머: 합성, 배향 및 응용", Information Display, 22, 34 (2021).
  3. T. J. White and D. J. Broer, "Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers", Nat. Mat., 14, 1087 (2015). https://doi.org/10.1038/nmat4433
  4. J. M. McCracken, B. R. Donovan, and T. J. White, "Materials as machines", Adv. Mater., 32, 1906564 (2020). https://doi.org/10.1002/adma.201906564
  5. Y.-Y. Xiao, Z.-C. Jiang, and Y. Zhao, "Liquid crystal polymer-based soft robots", Adv. Intell. Syst., 2, 2000148 (2020). https://doi.org/10.1002/aisy.202000148
  6. J. Bae, K. Kim, S. Choi, and S.-K. Ahn, "Liquid Crystal Elastomer-Based Soft Actuators", Korean Industrial Chemistry News, 24, 19 (2021).
  7. R. S. Kularatne, H. Kim, J. M. Boothby, and T. H. Ware, "Liquid crystal elastomer actuators: Synthesis, alignment, and applications", J. Polym. Sci., Part B: Polym. Phys., 55, 395 (2017). https://doi.org/10.1002/polb.24287
  8. C. P. Ambulo, S. Tasmim, S. Wang, M. K. Abdelrahman, P. E. Zimmern, and T. H. Ware, "Processing advances in liquid crystal elastomers provide a path to biomedical applications", J. Appl. Phys., 128, 140901 (2020). https://doi.org/10.1063/5.0021143
  9. C. P. Ambulo, J. J. Burroughs, J. M. Boothby, H. Kim, M. R. Shankar, and T. H. Ware, "Four-dimensional printing of liquid crystal elastomers", ACS Appl. Mater. Interfaces, 9, 37332 (2017). https://doi.org/10.1021/acsami.7b11851
  10. B. A. Kowalski, T. C. Guin, A. D. Auguste, N. P. Godman, and T. J. White, "Pixelated polymers: Directed self-assembly of liquid crystalline polymer networks", ACS Macro Lett., 6, 436 (2017). https://doi.org/10.1021/acsmacrolett.7b00116
  11. K. Kim, Y. Guo, J. Bae, S. Choi, H. Y. Song, S. Park, K. Hyun, and S.-K. Ahn, "4D Printing of Hygroscopic Liquid Crystal Elastomer Actuators", Small, 17, 2100910 (2021). https://doi.org/10.1002/smll.202100910
  12. J. Lee, Y. Guo, Y.-J. Choi, S. Jung, D. Seol, S. Choi, J.-H. Kim, Y. Kim, K.-U. Jeong, and S.-k. Ahn, "Mechanically programmed 2D and 3D liquid crystal elastomers at macro-and microscale via two-step photocrosslinking", Soft Mater, 16, 2695 (2020). https://doi.org/10.1039/C9SM02237F
  13. Z. Pei, Y. Yang, Q. Chen, E. M. Terentjev, Y. Wei, and Y. Ji, "Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds", Nat. Mater., 13, 36 (2014). https://doi.org/10.1038/nmat3812
  14. M. K. McBride, A. M. Martinez, L. Cox, M. Alim, K. Childress, M. Beiswinger, M. Podgorski, B. T. Worrell, J. Killgore, and C. N. Bowman, "A readily programmable, fully reversible shape-switching material", Sci. Adv., 4, eaat4634 (2018). https://doi.org/10.1126/sciadv.aat4634
  15. Z. Wang, and S. Cai, "Recent progress in dynamic covalent chemistries for liquid crystal elastomers", J. Mater. Chem. B., 8, 6610 (2020). https://doi.org/10.1039/d0tb00754d
  16. M. O. Saed, A. Gablier, and E. M. Terentjev, "Exchangeable liquid crystalline elastomers and their applications", Chem. Rev., 122, 4927 (2022). https://doi.org/10.1021/acs.chemrev.0c01057
  17. J.-H. Lee, J. Bae, J. H. Hwang, M.-Y. Choi, Y. S. Kim, S. Park, J.-H. Na, D.-G. Kim, and S.-k. Ahn, "Robust and reprocessable artificial muscles based on liquid crystal elastomers with dynamic thiourea bonds", Adv. Funct. Mater., 32, 2110360 (2022). https://doi.org/10.1002/adfm.202110360
  18. D. S. Lee, Y.-S. Choi, J. H. Hwang, J.-H. Lee, W. Lee, S.-k. Ahn, S. Park, J.-H. Lee, Y. S. Kim, and D.-G. Kim, "Weldable and reprocessable biomimetic polymer networks based on a hydrogen bonding and dynamic covalent thiourea motif", ACS Appl. Polym. Mater., 3, 3714 (2021). https://doi.org/10.1021/acsapm.1c00667
  19. D. Montarnal, M. Capelot, F. Tournilhac, and L. Leibler, "Silica-like malleable materials from permanent organic networks", Science, 334, 965 (2011). https://doi.org/10.1126/science.1212648