DOI QR코드

DOI QR Code

Building change detection in high spatial resolution images using deep learning and graph model

딥러닝과 그래프 모델을 활용한 고해상도 영상의 건물 변화탐지

  • Park, Seula (Institute of Engineering Research, Seoul National University) ;
  • Song, Ahram (Department of Location-Based Information System, Kyungpook National University)
  • Received : 2022.06.08
  • Accepted : 2022.06.23
  • Published : 2022.06.30

Abstract

The most critical factors for detecting changes in very high-resolution satellite images are building positional inconsistencies and relief displacements caused by satellite side-view. To resolve the above problems, additional processing using a digital elevation model and deep learning approach have been proposed. Unfortunately, these approaches are not sufficiently effective in solving these problems. This study proposed a change detection method that considers both positional and topology information of buildings. Mask R-CNN (Region-based Convolutional Neural Network) was trained on a SpaceNet building detection v2 dataset, and the central points of each building were extracted as building nodes. Then, triangulated irregular network graphs were created on building nodes from temporal images. To extract the area, where there is a structural difference between two graphs, a change index reflecting the similarity of the graphs and differences in the location of building nodes was proposed. Finally, newly changed or deleted buildings were detected by comparing the two graphs. Three pairs of test sites were selected to evaluate the proposed method's effectiveness, and the results showed that changed buildings were detected in the case of side-view satellite images with building positional inconsistencies.

다시기 고해상도 영상에 존재하는 건물의 위치 및 형태학적 왜곡은 건물의 변화탐지를 어렵게 만드는 요인 중 하나이다. 이를 해결하기 위하여 부가적인 3차원 지형정보 및 딥러닝을 활용한 연구가 수행되고 있지만, 실제 사례에 적용되기 어려운 한계가 있다. 본 연구에서는 건물의 효율적인 변화탐지를 수행하기 위하여, 건물의 위치 정보뿐만 아니라 건물 간 위상정보를 활용하는 방안을 제시한다. 다양한 비연직 영상에서의 건물을 학습하기 위하여 SpaceNet v2 데이터셋을 사용하여 Mask R-CNN (Region-based Convolutional Neural Network)을 학습하였으며, 건물 객체를 탐지하여 중심점을 노드로 추출하였다. 추출한 건물 노드를 중심으로 서로 다른 두 시기에 대해 각각 TIN (Triangulated Irregular Network) 그래프들을 형성하고, 두 그래프 간 구조적 차이가 발생한 영역에 기반하여 변화 건물을 추출하기 위해 그래프 유사도와 노드의 위치 차이를 반영한 변화 지수를 제안하였다. 최종적으로 변화 지숫값을 기반으로 두 그래프 간 비교를 통해 새롭게 생성되거나 삭제된 건물을 탐지하였다. 총 3쌍의 테스트 영역에 대해 제안한 기법을 적용한 결과, 건물들 간 연결성의 변화를 고려함으로써 기복 변위에 의해 서로 다른 시기간 동일 건물 쌍을 판단하기 어려운 경우에도 변화가 발생한 건물을 적절하게 탐지하는 것을 확인할 수 있었다.

Keywords

References

  1. Chen, J., Yuan, Z., Peng, J., Chen, L., Huang, H., Zhu, J., and Li, H. (2020), DASNet: Dual attentive fully convolutional siamese networks for change detection in high-resolution satellite images, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 14, pp. 1194-1206. https://doi.org/10.48550/arXiv.2003.03608.
  2. Chen, H., Zhang, K., Xiao, W., Sheng, Y., Cheng, L., Zhou, W., Wang, P., Su, Do., Ye, L., and Zhang, S. (2021), Building change detection in very high-resolution remote sensing image based on pseudo-orthorectification, International Journal of Remote Sensing, Vol. 42, No. 7, pp. 2686-2705. https://doi.org/10.1080/01431161.2020.1862437.
  3. Deng, C., Yuan, X., Deng, L., and Chen, J. (2020), Detecting matching blunders of multi-source remote sensing images via graph theory, Sensors, Vol. 20, No. 13, 3712. https://doi.org/10.3390/s20133712.
  4. Gong, J., Hu, X., Pang, S., and Wei, Y. (2019), Roof-cut guided localization for building change detection from imagery and footprint map, Photogrammetric Engineering and Remote Sensing, Vol. 85, No. 8, pp. 543-558. https://doi.org/10.14358/PERS.85.8.543.
  5. He, K., Gkioxari, G., Dollar, P., and Girshick, R. (2017), Mask R-CNN, In Proceedings of the IEEE International Conference On Computer Vision, 22-29 October 2017, Honolulu, HI, USA, pp. 2980-2988. https://doi.org/10.1109/ICCV.2017.322.
  6. Jiang, H., Hu, X., Li, K., Zhang, J., Gong, J., and Zhang, M. (2020), PGA-SiamNet: Pyramid feature-based attention-guided siamese network for remote sensing orthoimagery building change detection, Remote Sensing, Vol. 12, No. 3, 484. https://doi.org/10.3390/rs12030484.
  7. Kim, J. and Yu, K. (2012), Automatic detection of the updating object by a real feature matching based on shape similarity, Journal of the Korean Society of Survey, Geodesy, Photogrammetry, and Cartography, Vol. 30, No. 1, pp.59-65. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2012.30.1.059.
  8. Li, L., Wang, C., Zhang, H., Zhang, B., and Wu, F. (2019), Urban building change detection in SAR images using combined differential image and residual u-net network, Remote Sensing, Vol. 11, No. 9, 1091. https://doi.org/10.3390/rs11091091.
  9. Mo, J. S., Seong, S. K., and Choi, J. W. (2021), Change detection of building objects in urban area by using transfer learning, Korean Journal of Remote Sensing, Vol. 37, No. 6_1, pp. 1685-1695. (in Korean with English abstract) https://doi.org/10.7780/kjrs.2021.37.6.1.16.
  10. Peng, D., Zhang, Y., and Guan, H. (2019), End-to-end change detection for high resolution satellite images using improved UNet++, Remote Sensing, Vol. 11, No. 11, 1382. https://doi.org/10.3390/rs11111382.
  11. Prathap, G., and Afanasyev, I. (2018), Deep learning approach for building detection in satellite multispectral imagery, International Conference on Intelligent Systems, 25-27 September, Wroclaw, Poland, pp. 461-465.
  12. Ren, S., He, K., Girshick, R., and Sun, J. (2015), Faster R-CNN: Towards real-time object detection with region proposal networks, Advances in neural information processing systems, Vol. 28. https://doi.org/10.48550/arXiv.1506.01497.
  13. Shen, L., Lu, Y., Chen, H., Wei, H., Xie, D., Yue, J., Chen, R., Lv, S., and Jiang, B. (2021), S2Looking: A Satellite side-looking dataset for building change detection, Remote Sensing, Vol. 13, No. 24, 5094. https://doi.org/10.3390/rs1010000.
  14. Shin, D., Kim, T., Han, Y., Kim, S., and Park, J. (2019), Change detection of building demolition area using UAV, Korean Journal of Remote Sensing, Vol. 35, No. 5_2, pp. 819-829. (in Korean with English abstract) https://doi.org/10.7780/kjrs.2019.35.5.2.6.
  15. Sun, Y., Zhang, X., Huang, J., Wang, H., and Xin, Q. (2020), Fine-grained building change detection from very high-spatial-resolution remote sensing images based on deep multitask learning, IEEE Geoscience and Remote Sensing Letters, Vol. 19, pp. 1-5. https://doi.org/10.1109/LGRS.2020.3018858.
  16. Qin, R., Tian, J., and Reinartz, P. (2016), 3D change detection-approaches and applications, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 122, pp. 41-56. https://doi.org/10.1016/j.isprsjprs.2016.09.013.
  17. Van Etten, A., Lindenbaum, D., and Bacastow, T. M. (2018), Spacenet: A remote sensing dataset and challenge series, arXiv preprint arXiv:1807.01232. https://doi.org/10.48550/arXiv.1807.01232.
  18. Varol, B., Yilmaz, E. O., Maktav, D., Bayburt, S., and Gurdal, S. (2019), Detection of illegal constructions in urban cities: Comparing LIDAR data and stereo KOMPSAT-3 images with development plans, European Journal of Remote Sensing, Vol. 52, No. 1, pp. 335-344. https://doi.org/10.1080/22797254.2019.1604082.
  19. Wu, J., Li, B., Qin, Y., Ni, W., and Zhang, H. (2021), An object-based graph model for unsupervised change detection in high resolution remote sensing images, International Journal of Remote Sensing, Vol. 42, No. 16, pp. 6209-6227. https://doi.org/10.1080/01431161.2021.1937372.